Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен селективность

    Жидкостные электроды. В жидкостных ионселективных электродах возникновение потенциала на границе раздела фаз обусловлено ионным обменом, связанным с различием констант распределения иона между жидкой и органической фазами. Ионная селективность достигается за счет различия в константах распределения, устойчивости комплексов и различной подвижности определяемого и мешающего ионов в фазе мембраны. В качестве электродноактивного соединения в жидкостных ионселективных электродах могут быть использованы хелаты металлов, ионные ассоциаты органических и металлосодержащих катионов ц анионов, комплексы с нейтральными переносчиками. Большое распространение получили пленочные пластифицированные электроды, выпускаемые промышленностью и имеющие соответствующую маркировку, например, ЭМ—СЮ4 01, ЭМ—НОз —01. Чувствительный элемент таких электродов состоит из электродноактивного компонента, поливинилхлорида и растворителя (пластификатора). В лабораторной практике используют аннонселективные электроды, для которых электродноактивным соел,инением являются соли четвертичных аммониевых оснований. [c.121]


    Существует предположение, что в ионном обмене цеолит проявляет повышенную селективность по отношению к данному катиону в том случае, если этот катион был введен в цеолит в процессе синтеза. Эта гипотеза проверялась на примере обмена стронция и кальция. Специально были синтезированы стронциевый и кальциевый мордениты. Коэффициент разделения стронция и кальция ( Са) У стронциевого цеолита изменялся от 3,5 до 8,4, а у кальциевого — от 0,5 до 1,5. Синтетический стронциевый. клиноптилолит по избирательности к стронцию оказался близким к природному минералу [76]. [c.599]

    Применяя иониты, селективные по отношению к определенным ионам, можно оказывать влияние на состояние равновесия ионного обмена. Чем больше сродство ионита к иону по сравнению со сродством к иону Н+, тем полнее проходит ионный обмен в верхнем слое ионита и тем меньше переходный слой. [c.379]

    Разделение циркония и гафния труднее, чем любых соседних элементов, включая лантаноиды, так как их химические свойства ближе друг к другу, чем у всех остальных пар родственных элементов (рис. 3.99). Для отделения циркония от гафния применяют дробную кристаллизацию КгХгРе и К2Н Ре, ректификацию летучих соединений (ЭСЬ. и др.), ионный обмен, селективную экстракцию, последний метод наиболее широко применяют в промышленности. [c.503]

    Величина Кмв в уравнении (IX.94) — основная характеристика свойств ИСЭ. Согласно изложенной выше теории она двояким образом зависит от этих свойств. С одной стороны, она связана с относительной подвижностью ионов в мембране чем больше относительная подвижность мешающего иона В+, тем больше его влияние на потенциал А+-селективного электрода. С другой стороны, /Са/в зависит от селективности поглощения мембраной иона при ионном обмене. [c.525]

    Способность к ионному обмену многих неорганических веществ, главным образом алюмосиликатов, известна давно. Уже в конце прошлого столетия некоторые природные и синтетические алюмосиликаты нашли применение для умягчения воды, очистки сахарного сиропа от калия. Однако известные в то время неорганические иониты (глинистые минералы, синтетические алюмосиликаты — пермутиты) обладали низкой химической устойчивостью и небольшой обменной емкостью, ограничивших их применение. Появление синтетических ионообменных смол привело к длительному забвению неорганических ионитов. Однако развитие в послевоенные годы радиохимии и атомной энергетики потребовало создания радиационно и термически стойких ионообменных материалов, обладающих к тому же высокой селективностью. Этим требованиям не удовлетворяли имевшиеся в то время органические ионообменные смолы, и внимание исследователей разных стран вновь привлекли неорганические соединения. [c.670]


    В системах твердое тело — газ (пар) протекают процессы адсорбции (избирательного поглощения твердым веществом — адсорбентом одного или нескольких компонентов газовой, паровой или парогазовой смеси) и десорбции (выделения адсорбированных веществ из твердых тел), а также процессы сушки твердых материалов. В системах твердое тело — жидкость осуществляются процессы получения растворов твердых веществ, кристаллизации из растворов и расплавов, избирательного поглощения твердыми телами (адсорбентами или ионитами) отдельных компонентов из растворов (адсорбция, ионный обмен), выщелачивания или экстрагирования растворимых веществ из твердых тел и промывки осадков, получаемых в процессах разделения суспензий. Для систем жидкость — жидкость характерны процессы разделения жидких смесей путем избирательного растворения отдельных компонентов селективными растворителями, ограниченно смешивающимися с исходным раствором (жидкостная экстракция), а для систем жидкость — газ — процессы разделения газовых смесей путем избирательного поглощения из них одного или нескольких компонентов селективными растворителями (абсорбция) и противоположные процессы выделения растворенных в жидкости газов (десорбция). Наконец, в системах жидкость —пар проводятся процессы разделения жидких смесей (дистилляция и ректификация). [c.402]

    Сейчас наиболее экономичны и перспективны методы извлечения молибдена из растворов экстракцией и ионным обменом. Их достоинства 1) полнота выделения полезного элемента из раствора 2) селективность выделения элементов из комплексных растворов 3) полнота отделения примесей 4) простота аппаратурного оформления  [c.211]

    Ионный обмен и сорбция на углях. Ионный обмен в технологии молибдена может применяться для а) селективного извлечения Мо из основных растворов как относительно богатых им, так и бедных б) из- [c.214]

    Ионный обмен на фосфорилированном хлопке (указания на селективные свойства отсутствуют) [2212]. [c.331]

    В последнее время получили распространение и так называемые гетерогенные мембраны. В последних твердое вещество, обеспечивающее ионный обмен, распределено в непроводящей матрице, которая придает мембране подходящие физико-механические свойства. В качестве подобных инертных веществ используют силиконовый каучук, полиэтилен, полистирол, коллодий и др. Разнообразные электроды этого типа с селективной чувствительностью по ионам SOf, l", ОН , Zn +, Ni + и др. получены при сочетании подходящих ионообменных смол (см. гл., Х1П) с соответствующей инертной матрицей. В других электродах в качестве активного вещества используют различные малорастворимые соли или хелатные комплексы. На этой основе созданы электроды, чувствительные к ионам F , S , I", РО , SO4", К , Na+, Са +, Ag+ и др. [c.343]

    Современная монография по ионному обмену рассматривается получение, свойства, селективность, набухание, влияние растворителей и применение ионообменных материалов. [c.700]

    Такие катализаторы, состоящие из чистого цеолита, не находят применения на действующих установках из-за высокой стоимости и чрезмерной активности. Однако введение сравнительно небольщих количеств цеолита в 5102, АЬОз или аморфный катализатор позволяет получать высокоактивные, селективные и стабильные катализаторы. Установлено, что цеолит V более активен, селективен и стабилен, чем цеолит X. Содержание цеолита V в цеолитсодержащем катализаторе можно снизить до 3—10%. Предпочтительно применять цеолитсодержащие катализаторы с высоким силикатным модулем (отношением 5102 к АЬОз) — не менее 5. Многие промышленные катализаторы на базе цеолитов ХиУ производят после введения ионным обменом катионов редкоземельных металлов и на алюмосиликатной основе. [c.56]

    Способность природных цеолитов обменивать катионы впервые обнаружена около 100 лет назад. Поскольку ионный обмен на цеолитах протекает достаточно легко, их сразу же стали изучать с точки зрения возможности использования для смягчения воды. Однако кристаллические цеолиты не нашли промышленного применения в качестве водосмягчителей. Вначале для этой цели применяли главным образом синтетические аморфные алюмосиликаты, позднее их заменили органические ионообменные смолы.. Тем не менее интерес к цеолитам не пропал, их продолжали изучать, а вскоре начали использовать в различных отраслях промышленности. Так, клиноптилолит — широко распространенный природный цеолит — применяется для селективного выделения радиоактивных ионов из отходов атомной промышленности [2]. [c.544]

    Для отделения циркония от гяфния применяют дробную кристаллизацию комплексных фторцдов Кг17х ь] и К2[НГРб , ректификацию летучих соединений ЭСЦ и других ионный обмен, селективную экстракцию (последний метод наиболее щироко применяют я промышленности). [c.488]


    Основной минерал циркония, представленный в циркониевых рудах, —это циркон, в меньшей мере — бадделеит. Обычно их получают как побочные продукты при добыче титановых руд. При механическом обогащении руд получается концентрат, который поступает на химическое извлечение циркония и гафния. Наиболее распространенный метод извлечения основан на восстановлении циркония графитом до карбида, который затем хлорируют. Карбидный процесс осуществляют в плавильной дуговой печи при 1800°, хлорирование — в шахтной печи при 500°. Отходящие газы — продукты хлорирования охлаждают до 100° при этом отогнанный 2гСи (вместе с НГСЦ) конденсируется, а более летучие хлориды кремния, титана и алюминия отгоняются. Хлориды циркония и гафния очищают от железа и нелетучих примесей возгонкой в атмосфере водорода, который восстанавливает трихлорид железа до нелетучего дихлорида. Следующий этап — разделение циркония и гафния. Недавно этот процесс имел чисто научный интерес, теперь он приобретает важное практическое значение. Апробированы десятки методов разделения этих элементов. В основе методов лежат дробная (фракционная) кристаллизация, дробное осаждение и термическое разложение соединений, сублимация и дистилляция галогенидов, адсорбция и ионный обмен, селективная экстракция. Наиболее перспективен экстракционный процесс он не столь трудоемок и его легко оформить как непрерывный. Мы остановимся на методе дробной кристаллизации и экстракционном. [c.163]

    Неорганический ионит — гидратированный диоксид циркония (ГДЦ) — в зависимости от pH раствора проявляет способность к катионному ил анионному обмену. Селективность ГДЦ к молибдат- и вольфрамат-ионам настолько высока, что эти анионы сорбируются даже в слабощелочной среде (примерно рН= 11) из минерализованных растворов. В то же время селективность ГДЦ к указанным анионам переходных металлов различается, что позволяет использовать данный сорбент для их разделения и выделения иэ минерализованных растворов. При этом разделение молибдена(VI) и вольфрама (VI) на ГДЦ производится более простым стпособом, чем на органических анионитах. [c.332]

    Селективность. Под селективностью понимают свойство ионита в одних, и тех же условиях по-разному вступать реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с про-тивоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-153] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана 142], и можно сделать вывод, что селективность ионита зависит от его набухания или-обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    Глауконит и вермикулит представляют собой железо-алюмосиликаты, содержащие магний и калий. В природе глауконит встречается обычно в виде глауконитового песка, окрашенного в зеленые тона, причем интенсивность окрашивания определяется содержанием коллоиднодисперсного минерала глауконита, сцементированного крем-некислотой. В реакцию обмена вступают лишь ионы калия. Глауконитовый песок обладает ничтожной пористостью и ионный обмен происходит преимущественно на внешней поверхности, поэтому его обменная емкость невелика (см. табл. 1). Обменными катионами у вермикулита являются магний и калий. Вермикулит проявляет поразительную селективность по отношению к определенным катионам. Так, было обнаружено, что из раствора 0,1 н. Na I -f +0,001 H. s l образец вермикулита поглотил 96,2% цезия и 3,8% натрия. Такую же высокую избирательность поглощения вермикулит проявляет и в отношении к микроколичествам ионов стронция в присутствии высоких концентраций солей натрия. Это свойство позволило применить вермикулит в качестве сорбента для поглощения радиоактивных примесей при дезактивации сточных вод. [c.40]

    Наиболее поздний обзор препаративных методов получения чистой окиси скандия приведен в статье Массонне [ ], где сделан вывод о том, что эта задача может быть решена лишь комбинацией методов разделения. Используя двукратное осаждение тартрата аммония-скандия, четырехкратную экстракцию роданида скандия диэтиловым эфиром, осаждение гидроокиси и очистку солянокислого раствора, содержащего скандий, с помощью селективного осаждения хлоридов редкоземельных элементов и алюминия и абсорбции примесей анионитами, Массонне получил окись скандия чистотой 99.99%. Однако содержание элементов-примесей в очищаемых им образцах не является характерным для окиси скандия, получаемой из типичного сырья, а некоторые из примененных методов очистки (эфирнороданидная экстракция, ионный обмен) характеризуются либо повышенным расходом реагентов, либо низкой производительностью, а также рядом других недостатков, препятствующих использованию их в больших масштабах. [c.300]

    К синтетическим неорганическим сорбентам, обладающим способностью к ионному обмену, относятся силикагель, алюмосиликаты, труднорастворимые оксиды и гидроксиды ряда металлов (алюминия, хрома, олова, циркония, тория, титана и др.), полимерные соли циркония, титана и других элементов, соли гетерополикислот. Неорганические синтетические иониты отличаются большим разнообразием свойств, для них хара стерно селективное поглощение отдельных ионов из их смесей в растворах. В отличие от природных минеральных сорбентов, синтетические обладают в ряде случаев значительно большей на-бухаемостью в воде и водных растворах, что увеличивает степень участия ионогенных групп в сорбционном процессе. [c.41]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    Л. П. Ширинская и Н. Ф. Ермоленко [22] изучали ионный обмен на цеолите СаА при взаимодействии последнего с растворами, содержащими катионы щелочных металлов, а также катионыNH4 и Ag . Они обнаружили, что цеолит СаА проявляет отчетливо выраженную селективность по отношению к ионам серебра, и может быть использован для количественного определения серебра и выделения его из смеси с другими катионами, даже из очень разбавленных растворов.  [c.48]

    Для того чтобы получить ионит высокой избирательности, нужно лметь в нем, кроме активных групп, способных к обмену ионов-с раствором, дополнительные группы, способные к комплексообразованию с ионами, в отношении которых синтезируемый ионит должен обладать селективностью действия. Такую ионитную смолу можно получить, например, поликонденсацией смеси антра-ниловой кислоты МН2СвН4СООН и резорцина с формальдегидом. Структура полученного катионита такова, что его карбоксильные группы участвуют в ионном обмене и образуют с некоторыми металлами (цинк, кобальт, никель) ионную связь, а имидные группы — координационную связь  [c.71]

    При ионном обмене на сильнокислотных сульфокатиони-тах и сильноосновных анионитах, а также неорганических ионообменниках, не обладающих комплексообразующими свойствами наблюдается только электростатическое притяжение ионов к ионогенным (фиксированным) группам ионита. Электростатическое притяжение тем сильнее, чем больше величина заряда и чем меньше радиус гидратированного иона, т. е. чем выше плотность заряда иона. Поэтому можно ожидать более селективное поглощение высокозарядных ионов по сравнению с низкозарядными, если радиусы соответствующих гидратированных ионов не слишком различаются. [c.184]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизобутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например, ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. [c.330]

    Характеризуют И. спец. параметрами, количественно описывающими способность к обмену и селективность при обмене в многокомпонентном р-ре. Важнейшей количеств, характеристикой И. является обменная емкость-суммарное кол-во противоионов, приходящихся на единицу массы или объема И., в мг-экв/г(мл) или ммоль/г(мл). В зависимости от условий определения различают статич. и динамич. емкость. Коэф. распределения Р характеризует способность И. концентрировать извлекаемый компонент Л-, Р-отношение концентрации этого компонента в И. (с ) к его равновесному содержанию в р-ре (с ) Р = j . Для характеристики сродства (избирательности) И. к определенному иону или компоненту р-ра используют предельный коэф. распределения Р при с -> 0. См. также Ионный обмен. Избирательность зависит от структуры И., хим. строения ионогенных групп и от того, в какой форме извлекаемый ион находится в р-ре (напр., от степени его гидратации, размера, степени сольватации ионогенными и функц. группами). Макс. сольватация сорбируемого иона в фазе И. обеспечивает высокое сродство И. к этому иону. При сорбции крупных и сильно гидратир. ионов избирательность может определяться кол-вом и размером пор И., к-рые для синтетич. орг. И. зависят от типа и кол-ва сшивающего агента и инертного р-рителя, использованных при синтезе (см., напр.. Макропористые ионообменные смолы). [c.256]

    Селективность обмена I на сульфокпслотмом катионите вьфажена значительно слабее, чем при сорбции на карбоксильных катионитах, по тем не менее при использованпи любого катионита можно установить ряды катионов, вытесняющих друг друга из смолы при ионном обмене. Для обмена на сильнокислотном сульфокатионите К -2 установлены следзтощие ряды ионов по энергии их вытеснения из смолы друг другом  [c.136]

    С практической точки зрения необходимо признать, что ионный обмен не очень селективный процесс. Чаще разделение на ионообменниках проводят путем изменения форм нахождения ионов в растворе, варьируя pH раствора или вводя комплексообразующие вещества, связывающие ионы в комплексы. Например, в щелочных растворах на анионообменниках алюминий, который в этом растворе существует в виде комплекса А1(0Н)4, можно отделить от щелочно-земельных элементов. Из солянокислых сред N (11), А1(Ш), У(Ш), ТЬ(1У) не сорбируются аннонообменниками, поскольку они не образуют анионных хлоридных комплексов, тогда как большинство металлов сорбируется, проявляя значительные различия в величинах констант обмена. [c.245]

    Кнох и Зиндер [497] сообщили о селективной экстракции четырехвалентного плутония триизооктиламином в ксилоле и три-лауриламином в керосине из азотнокислых растворов. Извлечение Pu(IV) проводят из 6,5 М HNO3, в которой плутоний находится частично в виде аниона [Pu(N03)6] ". В результате экстракции равновесие комплексообразования смещается и происходит полное извлечение плутония (подобно ионному обмену). Метод позволяет довольно селективно отделить плутоний от урана и продуктов деления (табл. 49). Очистка плутония [c.345]

    Из большого числа методов разделения ниже приведено лишь несколько пригодных для работы с небольшими количествами веществ н достаточно простых в аппаратурном оформленпи. Более подробно с этим вопросом можно ознакомиться по специальным монографиям. Обширная информация содержится в обзорах [1, 2]. Будут рассмотрены следующие методы фракционирования кристаллизация, осаждение, дистилляция, селективные реакции и электролиз, ионный обмен и адсорбция, распределение между двумя растворителями. [c.1420]

    Исследования структуры, адсорбционных, ионообменных и других свойств цеолитов часто проводились на природных образцах. Так, все первые экспериментальные работы по ионному обмену н селективной адсорбции различных газов (см. гл. 1) были выполнены на природных минералах. Эти работы значительно расширили наши знания о цеолитах. Основные сведения о природных цеолитах — их классификация, распространеппость, условия образования и свойства — очень важны для понимания процесса синтеза и свойств синтетических цеолитов. Следует отметить, что, хотя некоторые разновидности цеолитов образуют значительные месторождения, природные образцы пока еще не наш.яп широкого применения в качестве катализаторов и адсорбентов, тогда как ряд их синтетических аналогов успешно используется на практике. [c.195]

    Цеолит Т проявляет избирательность по отношению к иону аммония приблизительно в такой же степени, что и к калию. Различная избирательность по отношению к отдельным ионам щелочных металлов объясняется тем, что небольшое содержание воды в цеолите Т не обеспечивает полной гидратации катионов. Обмен на калий характеризуется большей селективностью, чем обмен на щелочноземельные катионы. Используя метод предсказания селективности при ионном обмене, предложенный Лйзенманом, авторы работы [50] показали, что при возрастании отношения 31/Л1 обмен на одновалентные ионы будет протекать легче, чел1 обмен на двухвалентные ионы, что и наблюдается в случае цеолита.Т. [c.577]

    В настоящее время серьезной проблелюй является захоронение радиоактивных веществ, образующихся при переработке ядерного топлива. Исследования, проведенные в США, показали, что цеолиты могут быть использованы для выделения долгоживущих изотопов цезия и стронция. Указанные изотопы выделяют из жидких отходов радиоактивного производства, превращают в безводные хлориды цезия или фториды стронция и запаивают в металлические канистры для долговременного хранения. В качеств адсорбентов используются клиноптилолит, зеолон (морденит), NaA и AW-500 (см. гл. 9). Применяя зеолон, удалось выделить несколько килокюри изотопа s со степенью частоты выше 98% [2, 86]. Для извлечения радиоактивных изотопов пригодны цеолиты, обладающие достаточной химической стабильностью, устойчивостью к действию высокого уровня радиации. Другой метод хранения радиоактивных изотопов основан на их селективном извлечении при ионном обмене с последующей сушкой и дегидратацией изотопсодержащих цеолитов. Дегидратированные цеолиты, содержащие радиоактивные изотопы, запаивают в контейнеры, предназначенные для захоронения [87]. [c.606]

    По способам получения и по характеру иоиоген-ных групп комплексообразующие иониты мало отличаются от обычных ионнтов. Их получают теми же способами, что и универсальные иониты. Полимеры с одними и теми же функциональными группами могут проявлять себя в зависимости от условий процесса и как обычные, и как селективные комнлексо-образующие иониты. Так, ионообменные материалы, содержащие фосфорнокислые группы, проявляют себя и как сильнокислотные катиониты, и как селективные к ряду металлов сорбенты. В таких катионитах при взаимодействии с катионами металлов (иОа, Ре ) наряду с ионным обменом происходит образование хелатных группировок  [c.67]

    При извлечении радионуклидов из организма и при обеззараживании природных вод используют такие процессы расп1>еделения, как селективное комплексообразование и ионный обмен, а также способность отдельных растений или животных концентрировать те или иные радионуклиды. Например, водоросли концентрируют большинство радионуклидов, содержащихся в морской воде, в 10 -10 раз, а устрицы концентрируют цинк-65 в 2 10° раз. [c.499]

    Дальнейшее развитие теория селективности получила в работах Эйземана — Линга, которые в качестве характеристики гидратации использовали не радиусы или объемы гидратированных ионов, а четко определенные энергетические величины и электростатическое взаимодействие рассматривали как непосредственную причину обращения сродства. Выводы теории Эйзе-мапа — Линга подробно описаны в сборнике Ионный обмен (Пер. с англ. Под ред., Я. Маринского. М., Мир , 1968, с. 138 144). [c.147]

    Даже в случае таких хорошо известных и легко характеризуемых ионообменников, как сульфированные полистиролы, факторы, определяющие селективность, только сейчас начинают получать свое освещение. Степень сшивки и распределение поперечной сшивки смолы, распределение активных групп в объеме, емкость, количество конкурирующих ионов, уже присутствующих в смоле, И даже присутствие или отсутствие полярных групп, не участвующих в ионном обмене,— все это оказывает вполне заметное влияние на селективность смолы. Все, по-видимому, отдают себе отчет, что до тех пор, пока первичным процессом, лежащим в оенове действия хелатных смол, будет считаться ионный обмен, указанные выше соображения также будут играть важную роль в определении селективности смол, содержащих группы, способные давать хелатные соединения . [c.100]

    Равновесие при ионном обмене. Состояние равновесия пр1г ионном обмене обычно изображается графически в виде изотермы равновесия. Изотерма равновесия является важной характеристикой при ионном обмене. Она дает возможность судить о равновесной обменной емкости ионита и его селективности. При расчете ионообменных колонн изотермой равновесия пользуются для определения средней движущей силы процесса массообмена при ионообменной сорбции. [c.387]


Смотреть страницы где упоминается термин Ионный обмен селективность: [c.48]    [c.62]    [c.131]    [c.608]    [c.45]    [c.334]    [c.188]    [c.311]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.103 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная селективность

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Обмен селективный



© 2024 chem21.info Реклама на сайте