Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Трансмембранный градиент

    Нейроны, как и все живые клетки, обладают свойством электрической полярности за счет работы (На ,К )-насоса внутренняя поверхность мембраны нейрона заряжена отрицательно относительно ее наружной поверхности. В результате устанавливается динамическое равновесие, при котором электрохимический трансмембранный градиент равен нулю, а распределение зарядов неравномерно на внутренней поверхности мембраны образуется избыток отрицательных зарядов, снаружи — избыток положительных, т. е. возникает транс мембранная разность электрических потенциалов — потенциал покоя, величина которого составляет 60 — 70 мВ. Присоединение нейромедиатора открывает мембранные каналы, что позволяет ионам Ка беспрепятственно и в больших количествах проникать внутрь клетки. В результате всего за 0,001 с внутренняя поверхность нейрона оказывается заряженной положительно. Это кратковременное состояние перезарядки нейрона называется потенциалом действия, или нервным импульсом (рис. 16.3). Потенциал действия достигает 50—170 мВ таким образом, общая амплитуда изменения потенциала от значения в состоянии покоя до максимального значения при раздражении нерва составляет примерно 100—150 мВ. В форме потока ионов Ка" деполяризация распространяется вдоль аксона как волна активности. По мере распространения волны деполяризации участки аксона претерпевают также последовательную реверсию. [c.460]


    Отвлечение части — X на создание трансмембранного градиента pH могло закрепиться в процессе эволюции в связи с необходимостью обхода сравнительно медленной реакции X— АТФ. Реакция образования АТФ более медленная, чем реакция изменения pH. Образование градиента Н+ не имеет лаг-фазы при смене темноты светом, в то время как образование АТФ — минимум 2—3 секундную лаг-фазу. [c.212]

    Хемиосмотическая гипотеза, сформулированная английским биохимиком Питером Митчеллом, исходит из совершенно иного, нового принципа. Постулируется, что перенос электронов сопровождается выкачиванием ионов Низ матрикса через внутреннюю митохондриальную мембрану в наружную водную среду. Вследствие этого между двумя сторонами внутренней митохондриальной мембраны возникает градиент концентрации ионов Н (трансмембранный градиент). Синтез АТР, требующий затраты энергии, осуществляется именно за счет осмотической энергии, присущей этому градиенту. Можно думать, что именно хемиосмотическая теория наиболее точно отражает организуюхций принцип окислительного фосфорилирования. Рассмотрим некоторые характерные особенности этого процесса, свидетельствующие в пользу хемиосмотической гипотезы. [c.528]

    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    Все живые организмы, включая простейших прокариот, отделены от окружающей среды клеточной мембраной. При этом роль мембран не ограничивается просто механическим отделением содержимого клетки. Они необходимы также для протекания некоторых основополагающих для живой материи процессов, в первую очередь производства АТФ. Как при окислительном фосфорилировании, так и при фотосинтезе сложный надмолекулярный комплекс, вмонтированный в мембрану, обеспечивает создание трансмембранного градиента концентрации протонов, за счет которого и происходит фосфорилирование АДФ. [c.431]


    Избирательная проницаемость мембран. Это свойство обеспечивает регуляцию транспорта в клетку необходимых молекул, а также удаления из клетки продуктов метаболизма, т. е. активный обмен клетки и ее органелл с окружающей средой. Избирательный транспорт необходим также для поддержания трансмембранного градиента ионов, служит основой всех биоэнергетических механизмов, определяет эффективность процессов рецепции, передачи нервного возбуждения и т. п. [c.308]

    Транспорт протонов. Добавляя молекулярный кислород к суспензии аэробных бактерий или митохондрий, находившихся перед тем в анаэробных условиях, можно заметить снижение pH среды. Это позволяет заключить, что во время дыхания из бактериальных клеток и митохондрий выводятся протоны (рис. 7.12, v4 и Б). Если из мембран бактерий или митохондрий приготовить пузырьки, у которых прежняя внутренняя сторона обращена наружу (вывернутые везикулы), то при дыхании будет наблюдаться обращенный перенос протонов, приводящий к подщелачиванию суспензионной среды (рис. 7.12, В). В результате перемещения протонов создается градиент электрохимического потенциала. Внутреннее пространство интактных митохондрий или бактерий электроотрицательно по отношению к суспензионной среде и отличается более высоким pH. Оба трансмембранных градиента-градиенты pH 16  [c.243]

    Платиновый электрод может быть стационарным, вращающимся или вибрирующим (для сведения к минимуму диффузионных градиентов). Однако такие электроды обычно легко загрязняются при их применении для анализа биологических образцов. Эта проблема не возникает при использовании кислородного электрода Кларка [13], представляющего собой платиновый электрод, покрытый газопроницаемой мембраной. С помощью платинового электрода измеряют число, присутствующих на его поверхности молекул кислорода, главным образом на основе теории соударений. В электроде же Кларка время ответа пропорционально скорости диффузии кислорода через мембрану. В такой системе трансмембранный градиент концентрации кислорода возникает из-за того, что на поверхности электрода концентрация кислорода вследствие его потребления равна нулю. К счастью, скорость диффузии кислорода линейно зависит от его концентрации или парциального давления. Выход тока зависит также от площади платинового катода. [c.188]

    Как видно из анализа выражений для потоков переноса, при уменьшении толщины мембраны, а следовательно, при возрастании среднего трансмембранного градиента величина потока переноса ограничена некоторым предельным значением. [c.128]

    Потенциалы действия зависят только от свойств плазматической мембраны нейрона и трансмембранных градиентов концентрации Na и 1С. [c.299]

    На основе теории релаксационных конформационных переходов Блюменфельд в последние годы провел экспериментальные исследования синтеза АТФ в биологических мембранах — как в митохондриях, так и в тилакоидах (см. гл. 14). Показано, что АТФ синтезируется из АДФ и фосфата при скачкообразном повышении pH среды от 5 до 9. Это можно трактовать не как результат создания трансмембранного градиента pH, а как следствие возникновения неравновесных состояний АТФ-азы и других белков в цепях электронного транспорта н/или целой тила-копдной мембраны благодаря диссоциации определенных кислот- [c.440]

    Перспективы развития мембранной технологии в большой мере связаны с надеждалП на воспромзведеннс и практическое использование свойств биологических мембран, важнейшим из которых является способность осуществлять селективный обмен молекулами различных веществ. Уже сейчас промышленность располагает значительным набором мембран с селективными свойствами. Однако разработка и использование селективных мембранных материалов сталкивается до сих пор со значительными трудностями. Это связано главным образом с тем, что механизмы проницаемости как биологических, так и многих искусственных мембран окончательно не выяснены и не существует общего подхода к их описанию. Создание универсальной математической модели, адекватно описывающей мембранный транспорт, осложняется разнообразием процессов переноса через мембраны. В биологических мембранах выделяется пассивный транспорт (обычная диффузия), активный транспорт (перенос вещества против градиента концентрации) и облегченная диффузия (перенос вещества по градиенту концентрации с аномально высокой скоростью). В формировании реального процесса переноса могут принимать участие все механизмы в различных соотношениях. Одной из характерных особенностей многих селективных мембран является аномальная зависимость потока переноса от градиента концентрации [30—32]. В силу специфических свойств мембран, больших трансмембранных градиентов и активного взаимодействия потока переноса со структурой мембраны наблюдаются значительные отклонения от закона Фика. При этом линейная зависимость потока переноса от градиента концентрации оказывается справедливой только для малых трансмембранных градиентов. Наблюдается замедление роста потока переноса или даже насыщение при больших значениях трансмембранного градиента. [c.123]


    Итак, в соответствии с хемиосмотической теорией П. Митчелла, энергия, освобождаемая в результате работы электронтранс-портной цепи, первоначально накапливается в форме трансмембранного градиента ионов водорода. Разрядка образующегося Ацн+ происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса возвращаются по градиенту Дрн+ через Н" —АТФ-синтазу, при этом без возникновения каких-либо промежуточных высокоэнергетических соединений [c.101]

    Использование световой энергии для создания трансмембранного градиента протонов происходит с участием бактериородопсина и не связано с переносом электронов по цепи переносчиков. Этот хромопротеин с молекулярной массой 26 кДа содержит полипептидную цепь, построенную из 248 аминокислотных остатков и на 75 % состоящую из а-спиральньгх участков. Последние образуют 7 тяжей, ориентированных перпендикулярно плоскости мембраны (см. рис. 104, Б). Ретиналь расположен параллельно плоскости мембраны и, следовательно, перпендикулярно белковым тяжам. Связь между ретиналем и полипептидной цепью осуществляется через Шиффово основание, образованное в результате взаимодействия альдегидной группы ретиналя с е-аминогруп-пой 216-го лизинового остатка  [c.421]

    Экстремально галофильные архебактерии содержат еще один ретинальбелковый комплекс — галородопсин, закачивающий на свету в клетки ионы хлора. Создающийся трансмембранный градиент СГ используется для синтеза АТФ. Одновременно этим обеспечивается также поддержание в цитоплазме высокой концентрации анионов, необходимой для уравновешивания высокой ионной силы внешней среды. [c.422]

    NaК -Активируемая вденозинтрифосфатаза. Характерной особенностью животных клеток является резко выраженная асимметрия их ионного состава относительно внешней среды. Так, внутриклеточная концентрация ионов калия примерно в 30 раз выше, а ионов натрия в 10 раз ниже, чем в окружающей среде. Градиенты концентрации ионов натрия и калия регулируют объем клетки и ионный состав в узких пределах колебаний, обеспечивают электрическую возбудимость нервных и мышечных клеток и служат движущей силой для транспорта в клетку сахаров и вминокислот. Трансмембранные градиенты концентраций катионов являются [c.621]

    У морских ежей кратковременное повышение концентрации Са активирует специфические транспортные белки в плазматической мембране яйца (возможно, при участии кальмодулина), которые используют энергию, запасенную в виде трансмембранного градиента иоиов Na , для откачивания ионов Н из клетки (см. разд. 6.4.10). Отток ионов приводит к тому, что внутриклеточная величина pH возрастает с 6,6 до 7 и в дальнейшем поддерживается на этом уровне (см. рис. 14-48). Есть данные в пользу того, что именно это повышение pH индуцирует в оплодотворенных яйцах морского ежа позднюю биосинтетическую активность. Во-первых, если повысить pH в неопло-дотворенных яйцах, инкубируя их в среде, содержащей аммиак (рис. 14-52), то процессы синтеза белков и репликации ДНК заметно усиливаются даже без повышения внутриклеточной концентрации свободных ионов Са . Во-вторых, если сразу после оплодотворения поместить яйца в морскую воду, не содержащую ионов Na (так что не будет градиента Na для откачивания ионов Н ), внутриклеточный уровень pH не повышается н поздние события, связанные с активацией яйца, не наступают. Такие яйца еще можно спасти, добавив к среде аммиака тогда pH в клетке возрастает и даже прн отсутствии внеклеточного Na индуцируется синтез белков и ДНК. [c.48]

    Рнс. 18-8. Эта схема показывает, как трансмембранный градиент концентрашга ионов может быть сбалансирован градиентом напряжения. Плюсы означают К, плюсы в кружочке-Ма. Внут клетки концентрация К высокая, а снаружи низкая, тогда как концентрация Ыа снаружи выше, чем внутри. А. Здесь мембранные каналы свободно пропускают ионы К н ие пропускают На, позтому распределение ионов К между двумя сторонами мембраны равновесное, а ионов Ма -неравновесное. Небольшое количество ионов К выходит из клетки, и в результате у обеих поверхностей мембраны образуется заряженный слой (показан цветом). Выход иоиов калия продолжается до тех пор, пока возникшая разность потенциалов не уравновесит действие градиента концентрации К. При равновесии злектрохимичеСЕИЙ градиент К равен нулю суммарный поток иоиов К тоже равен нулю. Б. Здесь, наоборот, мембранные каналы свободно пропускают только На. В результате устанавливается противоположно направленная (по сравнению со случаем А) разность потенциалов, которая точно уравновешивает разность концентраШ1й ионов Ма по обе стороны мембраны. [c.78]

    Градиенты концентра1щи между двумя сторонами клеточных мембран (трансмембранные градиенты) варьируют очень сильно. Пожалуй, максимальный градиент концентрации в организме поддерживается плазматической мембраной обкладочных клеток слизистой оболочки желудка, секретирующих соляную кислоту в желудочный сок. Концентрация НС1 в желудочном соке может достигать [c.428]

    НЫЙ ПОТОК ионов Н+ через тилакоидную мембрану, направленный снаружи внутрь. Под влиянием индуцированного светом потока электронов возникает, следовательно, трансмембранный градиент концентрации ионов Н +, так что с внутренней стороны тилакоидных пузырьков среда становится более кислой, чем с наружной. Все эти свойства согласуются с хемиосмотической гипотезой, предложенной первоначально для объяснения ркислительного фосфорилирования, а позднее распространенной и на фотосинтетическое фосфорилирование. Схема на рис. 23-16 изображает поток ионов Н +, движимых световой энергией ионы Н+ поступают из стромы внутрь тилакоида и вновь возвращаются наружу через молекулы АТРч интетазы. [c.700]

    В 1966 г. Андрэ Ягендорф поставил важный эксперимент, доказавший, что источником энергии для синтеза АТР дшствительно может служить трансмембранный градиент pH, обращенный щелочным концом наружу. Сначала он [c.700]

    Хемиосмотическая гипотеза Митчелла связывает образование АТФ из АДФ с возникновением отрицательного градиента pH в хлоропластах но отношению к внешней среде при транспорте электронов под действием света (протонная помпа) [49]. Трансмембранный градиент pH в хлоропластах создает электрохимический потенциал, обеспечивающий фосфорилирование. Ингибиторы фосфорилирования и так называемые разобщители (среди них ионы аммония) могут уменьшить трансмембранный градиент pH из-за повышения проницаемости мембран хлоропластов, а не разрушать промежуточный X. Доводом в пользу хемиосмотической гипотезы является то, что синтез АДФ—>-АТФ возможен и в темноте, без всякого действия света, если в изолированных хлоропластах создать искусственно градиент pH [50]. Для этого их сначала помещают в раствор с низким pH, а затем быстро в раствор с высоким pH. Существует мнение о конкурентном образовании АТФ и трансмембранного протонного градиента из макроэргиче-ского соединения X  [c.34]

    С целью проверки второго возможного механизма активации было проведено сравнение кинетики потери хлоропластами активности в процессе старения с кинетикой уменьщения трансмембранного протонного градиента на фотосинтетической мембране (рис. 60). Кинетика изменения трансмембранного градиента pH в процессе инактивации хлоропластов действительно коррелирует с процессом, характеризуемым ti Тдрн=0,50=Р0,17 с ti=0,72=F ТО,08 ч, 30°. [c.135]

Рис. 60. Сравнение кинетики инактивации хлоропластов (/) с кинетикой уменьшения трансмембранного градиента pH (2) (Зайцев, Вржещ, Петухов, Курочкин, Маторин, Варфоломеев, 1980) Рис. 60. <a href="/info/387948">Сравнение кинетики</a> инактивации хлоропластов (/) с <a href="/info/707741">кинетикой уменьшения</a> трансмембранного градиента pH (2) (Зайцев, Вржещ, Петухов, Курочкин, Маторин, Варфоломеев, 1980)
    Следует, однако, учесть, что до сих пор остается неясным вопрос о том, является ли трансмембранный градиент pH облигатным интера.едиатом между транспортом электронов и образованием АТФ в хлоропластах или таковым может быть и рысокоэнергетическ кое нефосфорилированное соединение Х . Точного ответа на этот воьрэс пока нет. [c.227]

    Подсчитано, что при окислении 14,5 моля NO2 в N03 образуется 4 10 клеток Nitroba ter, при этом время генерации составляет 10— 100 ч. На фиксацию 1 моля СО2 требуется 85—115 молей NOJ (или для фиксации 1 г СО2 нужно окислить 35 г NO2). Установлено, что клетки Nitroba ter используют только 2—10% энергии, заключенной в NO2. Процесс образования карбоксисом для бактерий П фазы более редок, имеется развитая система мембран. Редокс-потенциал пары нитрит/нитрат равен +400 мВ, и электроны переносятся на уровень цитохромоксидазы, поэтому в результате генерируется 1 молекула АТФ (одно место сопряжения). АТФ также может образовываться за счет трансмембранного градиента протонов. Подсчитано, что для получения 1 моля НАДН необходимо окислить 5 молей нитрита с обратным переносом электронов. [c.171]

    Таким образом, Бр представляет собой ионный насос с переменным доступом активного центра к противоположным сторонам мембраны. В терминах конформационной динамики Бр представляет собой систему с двумя устойчивыми состояниями, причем избыточная конформационная энергия запасается в ходе фотоцикла в виде трансмембранного градиента электрохимического потенциала ионов водорода. [c.395]

    У морских ежей активация протеинкиназы С диацилглицеролом приводит к активации (преимущественно посредством фосфорилирования) Ка — Н -ионообмеппика плазматической мембраны яйцеклетки. Этот мембранный транспортный белок использует энергию, запасенную в виде трансмембранного градиента ионов Ка для откачивания ионов Н из клетки (см. разд. 6.4.10). Отток ионов Н приводит к тому, что величина pH внутри клетки возрастает с 6,6 до 7,2 и при дальнейшем развитии зиготы поддерживается на этом уровне (см. рис. 15-47). Считается, что необычно низкое значение внутриклеточного pH в неоплодотворенных яйцах морского ежа несет основную ответственность за поддержание яйцеклетки в метаболически неактивном состоянии более [c.49]

    Второй вопрос касается молекул, нерастворимых в жирах. Каким образом поддерживаются трансмембранные градиенты концентраций таких веществ Объясняется это следуюшим мембраны содержат белки, а белки также являются амфифильными молекулами и могут соответствующим образом встраиваться в бислой. Эти белки формируют каналы, по которым могут перемещаться ионы и малые молекулы, а также служат переносчиками для больших молекул, которые другим способом не могут пересечь бислой. Все эти процессы мы рассмотрим ниже. [c.131]

    Кристаллизация мембранных белков может быть реализована в том случае, когда белок удается очистить до гомогенного состояния без солюбилизации содержащих его мембран в детергентах. Именно к таким белкам относится Ыа" , К+-АТРаза наружного мозгового слоя почек млекопитающих, в частности свиньи. Этот фермент, являющийся натриевым насосом клетки и обеспечивающий создание трансмембранного градиента концентраций ионов натрия и калия, состоит из двух типов субъединиц а и (3, присутствующих в эквимолярных коли- [c.175]


Смотреть страницы где упоминается термин Трансмембранный градиент: [c.109]    [c.101]    [c.360]    [c.94]    [c.423]    [c.428]    [c.700]    [c.712]    [c.134]    [c.135]    [c.138]    [c.98]    [c.226]    [c.227]    [c.104]    [c.358]    [c.447]    [c.299]   
Молекулярная биология клетки Том5 (1987) -- [ c.78 ]




ПОИСК







© 2025 chem21.info Реклама на сайте