Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт мембранный, определение

    Хотя синтез АТР частично происходит и в растворимых ферментных системах, все же ббльшая часть АТР образуется в ферментных комплексах, расположенных в мембранах определенных классов. К таким сопрягающим мембранам относятся плазматическая мембрана прокариотических клеток (бактерий и сине-зеленых водорослей), внутренняя мембрана митохондрий и мембрана тилакоидов хлоропластов (рис, 1.1). Механизмы синтеза АТР и транспорта ионов в этих мембранах весьма близки, несмотря на различную природу первичных источников энергии. Это позволяет выделить изучение этих механизмов в отдельную область, названную энергетическое сопряжение или биоэнергетика. [c.9]


    С проблемой транспорта белков тесно связан вопрос о механизме встраивания в мембрану вновь синтезированных трансмембранных белков. Чтобы расположиться нужным образом в мембране, определенные домены этих белков должны пересечь гидрофобный барьер. [c.162]

    В начале двадцатого столетия предпринимались немалые усилия по разработке удобных мембранных моделей. Эти модели можно разделить на две группы модели, описывающие сплошные мембраны, обычно жидкие ( маслообразные ) и твердые [10, 33, 64, 77], и модели пористых мембран [9]. В самом начале изучения свойств сплошных мембран был сконструирован стеклянный электрод [18, 34], мембрана которого является первым примером мембраны с заметной селективностью к транспорту ионов определенного вида, в данном случае ионов водорода. Интересно отметить, что этот первый ионоселективный электрод до сих пор остается наилучшим и наиболее широко использующимся. [c.12]

    Примером высокоспецифичного физико-химического метода может служить ионометрия, в основе которой лежит эффект установления воспроизводимого равновесного потенциала на границе раздела мембрана — исследуемый раствор, который пропорционален концентрации (активности) определенных ионов. Селективность (характеристичность в отношении заданных конов) обусловлена специфичностью (повышенной прочностью) соединений данного иона, существующих в мембране, и избирательностью ионного транспорта в фазе мембраны (механизма электрической проводимости через границу раздела фаз). [c.15]

    Многие виды сенсоров для H2S, СО, H N, СЬ и других газов используются в качестве персональных детекторов при работе в опасных условиях в промышленности и на транспорте. При превышении заданного уровня концентрации газа они выдают звуковой сигнал. Некоторые из них определяют общую дозу воздействия вредного для здоровья фактора. Они применяются также в системах автоматического контроля за содержанием SO2, СО, N0 в окружающей среде. Серийные приборы часто позволяют определять несколько веществ с помощью одного сенсора. Селективность определений в этом случае достигается благодаря использованию сменных мембранных фильтров, выбору катализатора, потенциала электрода, состава раствора электролита, а также другими средствами. [c.554]

    Как и все прокариоты, Е. соИ имеет клеточную стенку, к которой с внутренней стороны примыкает клеточная мембрана. Кроме большой двухцепочечной ДНК, локализованной в нуклеоиде, Е. соН, подобно другим прокариотам, содержит несколько мелких кольцевых ДНК, которые называются плазмидами. Бактерии способны передвигаться в водной среде при помощи мембранных структур, называемых жгутиками. Важнейшая роль цитоплазматической мембраны заключается в избирательном транспорте питательных веществ в клетку и продуктов метаболизма из клетки. В цитоплазме Е. соИ локализованы рибосомы, секреторные гранулы, а также запасники питательных веществ — жиров или углеводов. Для прокариотических клеток характерно образование нитевидных ассоциатов, которые в определенных условиях могут диссоциировать на отдельные клетки. [c.12]


    Стадией, лимитирующей синтез АТФ, является высвобождение синтезированного АТФ из активного центра фермента в матрикс. Полагают, что энергозависимое протонирование отдельных функциональных групп АТФ-азного комплекса, происходящее за счет энергии АцН , вызывает конформационные изменения в Р компоненте, которые приводят к быстрому высвобождению синтезированного АТФ из активного центра фермента. Важным моментом является обратимость реакции, катализируемой АТФ-азным комплексом. При соответствующих условиях комплекс Рд—Р может расщеплять молекулу АТФ и использовать полученную при этом энергию для транспорта протонов, т. е. для образования на мембране АцН . Согласно концепции, постулированной В. П. Скулачевым, наряду с АТФ используется как конвертируемая валюта для энергетических превращений, протекающих на мембране. В связи с этим было предложено все энергетические превращения в клетке подразделить на две группы протекающие в цитоплазме (источник энергии — АТФ, креатинфосфат и другие макроэрги) и локализованные в мембране, использующие энергию Д йН (рис. 15.9). Следует отметить, что не уникален в качестве сопрягающего иона и у некоторых видов организмов при определенных условиях его может заменить ион натрия. [c.205]

    Все авторы подразумевают, что разделение фаз воды протекает, вероятно, на клеточном уровне. При этом могут существовать структурные элементы, в которых скорости релаксации значительно различаются, даже если транспорт воды чере мембрану происходит очень быстро. Это вызвано полупроницаемой природой клеточной мембраны по отношению к ионам в растворенным веществам, способным приводить к релаксации протонов воды. Фактически это свойство всей ткани использовано при разработке способа определения транспорта воды череэ мембраны эритроцитов методом ЯМР [11]. [c.184]

    Ясно, ЧТО этот процесс принципиально отличен от обычной тепловой диффузии. Последняя лежит в основе пассивного транспорта, который протекает по обычному закону Фика в направлении градиента концентрации. Пассивный транспорт в клетке играет минимальную роль, но все же не равен нулю. Проследить за ним можно, например, с помощью изотопной метки. Смысл липоидных мембран в том, что они плохо проницаемы, а иногда и совсем непроницаемы для водорастворимых метаболитов. Таковы преимущественно вещества, участвующие в жизнедеятельности, так как все ферментативные реакции протекают в водном растворе. Именно создавая препятствия пассивному транспорту, т. е. диффузии, клетка и организм в целом защищаются от различных ядов и производят, как принято говорить, исключение определенных веществ, присутствующих во внешней среде. Однако мы хорошо знаем, что исключение ядов не является абсолютным. Несмотря на все защитные меры, диффузия все же происходит. [c.177]

    Кроме равновесного фактора в избирательных свойствах ионоселективного жидкостного электрода некоторую роль может играть отношение подвижностей ионов, определяемое кинетическими (диффузионными) процессами в мембране. Из уравнений для мембранного жидкостного электрода (см. стр. 23, 24) следует, что в общем случае для расчетов и проверки теории необходимы данные но относительным подвижностям ионов и частиц, участвующих в транспорте через мембрану. В большинстве случаев достаточно экспериментального определения отношения подвижностей ионов (ыв/йд), поскольку коэффициент электродной селективности определяется в первом приближении произведением /Са-в(ыв/йд). [c.36]

    При перемещении груза из одного компартмента в другой транспортные пузырьки обязательно переносят как мембраны, так и содержимое органелл. Тем не менее и при таком выравнивающем процессе сохраняются различия в составе мембран разных компартментов белок-рецептор SRP встречается только в мембране ЭР, а гликозилтрансферазы и ферменты процессинга олигосахаридов расположены только в мембранах определенных цистерн Гольджи и т. д. Следовательно, мембраны ЭР и каждою типа цистерн Гольджи должны иметь специальные механизмы для сохранения своей уникальности. Один из них - наличие специальных сигналов сортировки для каждого этапа продвижения продукта через ЭР и аппарат Гольджи. В результате, например, белки плазматической мембраны, попадающие в клетку путем специфического эндоцитоза. захватываются окаймленными ямками. Однако существует точка зрения, согласно которой при биосинтетическом транспорте через ЭР и аппарат Г ольджи, используется противоположный механизм, г.е. транспорт происходит автоматически, а для удержания продукта в орга-нелле требуются специфические сигналы. В соответствии с этой гипотезой каждый постоянный компонент ЭР или аппарата Гольджи должен иметь специальный сигнал, отвечающий за его сохранение в этом компартменте. Стратегия автоматического движения вперед и избирательного сохранения привлекательна еще и потому, что число белков, проходящих сквозь ЭР и аппарат Г ольджи к месту конечного назначения, значительно больще числа белков, остающихся там. Более того, при такой стратегии те белки, которые утратили свои сигналы сортировки, или были направлены в неверном направлении, могут выводиться из клетки Наконец, если бы сигналы требовались для транспорта, то они были бы необходимы для каждой его стадии - от ЭР к аппарату Г ольджи [c.82]


    Позднее были получены экспериментальные данные о существовании еще одной формы энергии, также используемой клеткой для совершения разного рода работы. Открытие этой формы энергии принадлежит английскому биохимику Питеру Митчеллу (Р. Mit hell), разработавшему в 60-х гг. хемиосмотическую теорию энергетического сопряжения, объясняющую превращение (трансформацию) энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ. П. Митчелл постулировал, что при переносе электронов по окислительно-восстановительной цепи, локализованной в мембранах определенного типа, называемых энергопреобразующими, или сопрягающими, происходит неравномерное распределение Н+ в пространстве по обе стороны мембраны (рис. 25). Предложенная им модель предусматривает определенное расположение переносчиков электронов в сопрягающей мембране, например ЦПМ, которые могут быть погружены в глубь мембраны или локализованы у наружной и внутренней ее поверхностей, так что образуют петли в цепи переноса электронов. В каждой петле (у прокариот электронтранспортные цепи в сопрягающих мембранах могут формировать разное число петель ) два атома водорода движутся от внутренней стороны ЦПМ к наружной с помощью переносчика водорода (например, хинона). Затем два элект-рона возвращаются к внутренней стороне мембраны с помощью со- [c.86]

    Непористые реакционно-диффузионные мембраны отличаются от прочих химической формой связи компонентов разделяемой смеси и исходного материала мембраны. Химические реакции приводят к образованию новых веществ, участвующих в транспорте целевого компонента. Массоперенос компонентов разделяемой газовой смеси определяется не только внешними параметрами и особенностями структуры матрицы, но и химическими реакциями, протекающими в мембране. В подобных системах за счет энергетического сопряжения процессов диффузии и химического превращения возможно ускорение или замедление мембранного переноса, в определенных условиях возникает активный транспорт, т. е. результирующий перенос компонента в направлении, противоположном движению под действием градиента химического потенциала этого компонента. В сильнонеравновесных мембранных системах могут формироваться структуры, в которых возникают принципиально иные механизмы переноса, например триггерный и осциллирующий режимы функционирования мембранной системы. Обменные процессы такого рода обнаружены в природных мембранах, но есть основания полагать, что синтетические реакционно-диффузионные мембраны в будущем станут основным типом разделительных систем, в частности, при извлечении токсичных примесей из промышленных газовых выбросов. [c.14]

    Изучение мембранных явлений на живых организмах — чрезвычайно сложная экспериментальная задача. В 1962 г. П. Мюллер и сотрудники разработали методику приготовления бимолекулярных фое-фолипидных мембран, что предоставило возможность модельного исследования ионного транспорта через мембраны. Для приготовления искусственной мембраны каплю экстракта мозговых липидов в углеводородах наносят на отверстие в тефлоновом стаканчике (рис. 46, а). Искусственные мембраны имеют более простое строение, чем естественные (ср. рис. 45 и 46, б), но приближаются к последним по таким параметрам, как толщина, электрическая емкость, межфазное натяжение, проницаемость для воды и некоторых органических веществ. Однако электрическое сопротивление искусственных мембран на 4—5 порядков выше. Проводимость мембран увеличивают, добавляя ионофоры жирорастворимые кислоты (2,4-динитрофенол, дикумарол, пентахлорфе-нол и др.) или полипептиды (валиномицин, грамицидины А, В и С, ала-метицин и др.). Мембрана, модифицированная валиномицином, имеет сопротивление порядка 10 Ом/см , а ее проницаемость по К-" в 400 раз выше, чем по Ма+. На модифицированных моделях был изучен механизм селективной проницаемости мембран. В определенных условиях при добавлении белковых компонентов искусственная мембрана позволяет моделировать также свойство возбудимости. [c.140]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Многие ГТ.ф. прочно ассоциированы с клеточньаш мембранами и поэтому действуют только на определенные белки (т. наз. компартментализация). К шш относят, напр., сигнальные протеазы, участвующие в транспорте белков во внеклеточное пространство. В зависимости от локализации фермента протеолиз происходит при разл. pH. Так, П. ф. желудка (напр., пепсин, гастриксин) функционируют при pH [c.113]

    Для кинетического разделения ряда органических соединений вместо препаратов внеклеточных липаз могут быть использованы целые клетки микроорганизмов, обладающие энантиоселек-тивными внутриклеточными гидролазами Однако, на практике такие биокатализаторы пока еще применяются редко, вероятно, из-за опасения возможных побочных трансформаций субстрата и целевого продукта под действием других клеточных ферментов, а также из-за необходимости транспорта субстрата и продукта через цитоплазматическую мембрану и клеточную стенку. Вместе с тем, клеточные катализаторы могут иметь определенные преимущества перед очищенными ферментами, связанные, прежде всего, с более низкой стоимостью катализатора и возможностью многократного использования. [c.444]

    Как действуют антибиотики Некоторые, подобно пенициллину, блокируют работу определенных ферментов (дополнение 7-Г). Пептидные антибиотики (разд. Б.2.в) часто образуют комплексы с ионами металлов и нарушают, по-видимому, регуляцию ионной проницаемости в мембранах бактерий. Полиеновые антибиотики влияют на транспорт протонов и ионов в мембранах грибов. Тетрациклины, так же как многие другие антибиотики, нарушают непосредственно синтез белка (гл. 15, разд. В.2з). Некоторые другие антибио- [c.367]

    Биологические мембраны, состоящие из сложных смесей различных классов липидов с разными алкильными цепями, при физиологических температурах находятся, по-видимому, в состоянии латерального разделения фаз. Высокая способность к латеральному сжатию, обусловленная одновременным существованием твердой и жидкой фазы, может влиять на активность находящихся внутри мембраны ферментов, что позволяет включаться в мембрану новым компонентам и сказывается на процессах транспорта. Исследованы [23] свойства мембран клеток мутантных щтаммов Е. oli, для роста которых необходимо наличие жирных кислот состав их внутренней мембраны может быть обогащен определенными алкильными цепями путем прибавления к питательной среде соответствующих жирных кислот. Изменение текучести бислоя и скорости транспорта -глюкозида для внутренней мембраны соИ, выращиваемой на среде с добавкой линолевой кислоты, в зависимости от температуры показано на рис. 25.3.6. Точки перегиба на графике Аррениуса соответствуют экстремумам латерального разделения фаз. Наблюдается также изменение энергии эктивации транспорта, которое приблизительно коррелирует с гра- [c.119]

    На основе теории релаксационных конформационных переходов Блюменфельд в последние годы провел экспериментальные исследования синтеза АТФ в биологических мембранах — как в митохондриях, так и в тилакоидах (см. гл. 14). Показано, что АТФ синтезируется из АДФ и фосфата при скачкообразном повышении pH среды от 5 до 9. Это можно трактовать не как результат создания трансмембранного градиента pH, а как следствие возникновения неравновесных состояний АТФ-азы и других белков в цепях электронного транспорта н/или целой тила-копдной мембраны благодаря диссоциации определенных кислот- [c.440]

    В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода (ДДн+)> т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ. Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзави-симого фосфорилирования. Последнее подразделяется на два вида окислительное (АТФ образуется в процессе электронного переноса при окислении химических соединений) и ф о-тосинтетическое (синтез АТФ связан с фотосинтетическим электронным транспортом) фосфорилирование. Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т. е. механизмы мембранзависимого фосфорилирования, одинаковы. Таким образом, энергия, получаемая в процессах брожения, дыхания или фотосинтеза, запасается в определенных формах. [c.97]

    Энергия протонного градиента связана исключительно с мембранами, которые являются и необходимым компонентом для его образования. Поэтому энергией в форме Арн+ могут обеспечиваться только процессы, локализованные на мембране. Таким образом, у Арн+ более узкая область приложения . В то же время использование клеткой энергии в форме Арн+ имеет определенные преимущества Арн+ в форме его электрической составляющей — более удобная форма энергии для внутри- и межклеточной транспортировки. Скорость переноса энергии посредством диффузии АТФ в цитоплазме значительно медленнее, чем скорость передачи Д / по мембранам. Диффузия АТФ может быть сильно затруднена в клетках с развитой системой внутрицитогшазматических мембран. Наконец, перенос энергии посредством диффузии АТФ совсем неэффективен, если речь идет о межклеточном транспорте энергии, что важно для многоклеточных организмов. В этом случае эффективность передачи энергии по мембранам наиболее очевидна. [c.105]

    Циклическим электронным транспортом у фотосинтезирующих эубактерий не исчерпываются все возможные пути переноса электронов. Электрон, оторванный от первичного донора реакционного центра, может по цепи, состоящей из других переносчиков, не возвращаться к молекуле хлорофилла, а передаваться на такие клеточные метаболиты, как НАД(Ф)" или окисленный ферредоксин, которые используются в реакциях, требующих восстановителя. Таким образом, электрон, покинувший молекулу хлорофилла, выводится из системы . Возникает однонаправленный незамкнутый электронный поток, получивший название нециклического пути переноса электронов. У пурпурных и зеленых нитчатых бактерий функционирует только циклический светозависимый поток электронов. У остальных групп эубактерий фото-индуцируется как циклический, так и нециклический перенос электронов, при этом у зеленых серобактерий и гелиобактерий оба пути электронного транспорта связаны с функционированием одной фотосистемы, а у цианобактерий и прохлорофит циклический перенос электронов зависит от активности фотосистемы I, а для нециклического потока электронов необходимо функционирование обеих фотосистем. Поток электронов по цепи переносчиков на определенных этапах сопряжен с направленным перемещением протонов через мембрану, что приводит к созданию протонного градиента, используемого для синтеза АТФ. [c.281]

    Имеющиеся экспериментальные данные подтверждают вьщви-нутый в начале 60-х гг. XX в. английским биохимиком П. Митчеллом хемиосмотический механизм энергетического сопряжения электронного транспорта с фосфорилированием. П.Митчелл обратил внимание на судьбу протонов при электронном транспорте, которые переносятся в этом процессе через мембрану в одном направлении, создавая градиент концентрации по обе стороны мембраны (см. рис. 25). Перенос электронов и протонов обеспечивается определенным сорасположением мембранных переносчиков, а также свойствами самой мембраны, в первую очередь ее непроницаемостью для протонов. [c.365]

    В настоящее время липосомы используются как носители лекарств, так как их можно начинить различными лекарственными веществами. Состав липидов липосом можно произвольно варьировать и таю1м образом направленно изменять физико-химические свойства. Разработаны также методы включения функционально активных белков в мембрану липосомы. Такие искусственные белково-липидные структуры называются протеолипосомами. В липосомы можно вводить тканеспецифические антитела, что позволяет обеспечивать направленный транспорт включенньгх в них лекарств в определенные органы и ткани. [c.315]

    Вернемся теперь к синтезу АТР. Подавляющая часть молекул АТР (около 85 %) в животных бактериальных и растительных клетках синтезируются в мембранных внутриклеточных структурах (мембранное фосфорилирование). В аэробных организмах непосредственными источниками энергии (энергодонорные процессы) являются определенные стадии окисления пищи. В растениях и фотосинтезирующих бактериях первичными источниками явшяются, конечно, кванты света, энергия которых, после возбуждения хлорофилла, превращается в энергию в окислительно-восстановительных цепях электронного транспорта (ЦЭТ) в тилакоидных мембранах хлоропластов. [c.90]

    Несколько другой подход используется в опытах по изучению кинетики, избирательности, обратимости и других характеристик переноса ионов при нормальных физиологических условиях цель этих исследований состоит в изучении некоторых свойств системы транспорта. Подобные эксперименты вскоре привели к созданию концепции переносчиков как агентов, ответственных за перенос. (Этот подход совершенно аналогичен тому, который использовался на заре развития биохимии, когда задолго до определения химической природы ферментов ученые смогли доказать их существование и сделать заключения о способе их действия и многих других свойствах этих биологических катализаторов.) Предполагается, что переносчики представляют собой молекулы в мембране, обра- [c.265]

    Несмотря на то что применение природных полимеров (таких как целлюлоза) в качестве материалов для фильтрации было известно давно, историю синтетических полимерных мембран следует начать с получения Щенбейном [8] в 1846 г. нитрата целлюлозы, первого синтетического (в действительности, полусинтетического) полимера. В течение первого столетия после получения нитрата целлюлозы преимущественно применялись целлюлозные мембраны. В 1855 г. Фик [9] использовал нитратцеллюлозные мембраны для проведения своих исследований по диффузии, ставших впоследствии всемирно известными. В том же году Лермит [10] впервые сформулировал основы транспорта раствора через мембрану, а именно проницаемость является результатом взаимодействия пермеата с мембраной. Он показал, что теория растворения и теория пор (капиллярная теория) не исключают друг друга, а взаимно, без особых отклонений, дополняют одна другую. В 1860 г. Шумахер [11] разработал мембраны из нитрата целлюлозы в форме трубки (опытные образцы просто погружались в коллоидные растворы), которые используются и в настоящее время. В 1872 г. Баранецкий [12] получил первые плоские мембраны. Изменяя концентрацию нитрата целлюлозы, Бехгольд [13] в 1906 г. изготовил первые партии микрофильтрационных мембран с порами одинакового размера. Он также первым установил соотношение между точкой пузырька, поверхностным натяжением и радиусом поры. Представление о распределении пор по размерам было развито Карплусом [14], совместившим технические приемы для определения точки пузырька и измерения проницаемости по методу Хагена — Пуазейля. [c.15]

    Полимерные мембраны с высокой степенью кристалличности обычно менее проницаемы, чем аморфные мембраны. Считается, что молекулы пермеата, как правило, нерастворимы в кристаллических областях, и транспорт осуществляется в аморфной области. Поэтому кристаллизация приводит к уменьшению объема аморфного материала, в котором возможен перенос молекул пермеата, и увеличению извилистости пути через мембрану. Ла-зоский и Кобс [15] изменяли степень кристалличности полиэти-лентерефталата, который можно резко охлаждать при переводе из расплавленного состояния в аморфное, путем отжига за различные интервалы времени при температуре несколько выше 100 °С. Было установлено, что стационарное проникание водяных паров через эти мембраны уменьшилось при возрастании кристалличности от О до 40%. Рейтлингер и Ярко [16] наблюдали обратную зависимость между плотностью полимера и проницаемостью в процессе изотермической кристаллизации натурального каучука. Проницаемость зависит от микрокристаллической структуры полимерной мембраны, что также обусловливает линейную зависимость между влагопоглощением и долей аморфной фазы в целлюлозе [17]. Более того, при гидролитическом или бактериальном разрушении полимерных мембран в первую очередь и в сильной степени воздействию подвержена аморфная область [18]. Это явление было положено в основу экспериментального метода определения способности к деструк- [c.115]

    Третья важнейшая функция белков — структурная. Клетка не может быть уподоблена сосуду, в котором попросту перемешаны в растворе все метаболиты п ферменты, — она разделена на множество органелл, защищенных белковьши, часто лппопротеиновьши, мембранами, наделенными ферментативной активностью, препятствующими свободному проникновению растворенных веществ. Внешняя оболочка клетки также является липопротеидной мембраной с весьма селективной проницаемостью. Большинство ферментов в клетке находится внутри тех или иных органелл. Поэтому и все биохимические процессы локализованы в определенных местах. Продолговатые, довольно крупные тела (длиной около 0,5 х) — митохондрии содержат в себе ферменты окисления и окислительного фосфорилирования, т. е. катализаторы реакций, в которых запасается энергия, потребляемая клеткой. Маленькие круглые образования (диаметром 150— 200 х ) — микросомы пли рибосомы содержат в себе ферменты, необходимые для синтеза белков. В ннх главным образом локализованы процессы синтеза белка. Задача, выполняемая структурными белками клетки, с одной стороны, чисто архитектурная белки служат материалом, из кото рого строится то или иное морфологическое образование. С другой стороны, они регулируют прохождение различных веществ внутрь органелл, т. е. осуществляют так называемый активный транспорт различных веществ, идущий часто против градиента концентрации, т. е. в сторону, противополон ную диффузии. В высших организмах, в которых произошла дифференциация и специализация тканей, некоторые структурные белки присутствуют в значительных количествах, образуя специальные типы тканей. Таков, например, коллаген, фибриноген крови, склеропротеин роговицы глаза и т. п. Изучение своеобразного молекулярного строения этих белков показывает его тесную связь с выполняемой ими функцией. В этом случае мы также имеем основание говорить о функциональной активности, разыгрывающейся на молекулярном уровне. [c.5]

    Итак, рассмотрены механизм переноса ионов через мембрану при обратном осмосе и электроосмофильтрации на всех транспортных стадиях. Для определения ионных потоков в мембрану необходимо рассчитать массопередачу на стадии переноса ионов к поверхности мембраны со стороны исходного раствора и на стадии переноса ионов через границу разделяемого раствора и мембраны, а затем состыковать результаты расчетов с учетом граничных условий на поверхности мембраны. С принятыми нами допущениями получить решение этой задачи в аналитическом виде удается только в случае разделения бинарного раствора электролитов обратным осмосом. При электроосмофильтрации процесс переноса ионов через мембрану еще более осложняется обнаруженным и пока не изученным явлением интенсивного разложения воды на границе разделяемого раствора и мембраны. Тем не менее предложенное описание ионного транспорта и методы расчета факторов, влияющих на разделение ионов, по-видимому, позволят разработать методику количественного определения ионных потоков через мембрану. [c.129]

    МОЖНО рассматривать как электрод с жидкой мембраной,. в котором рабочая поверхность мембраны уменьшена до возможного предела. Этот тип микроэлектродов оказался особенно полезным для определения содержания ионов К+, С1-, Са +. В работе [317] предложен К+-селективный микроэлектрод с открытым концом диаметром 0,5—1 мкм, заполняемый раствором электродно-активного вещества в органическом растворителе. Этот электрод достаточно мал, поэтому может проникать сквозь стенку клетки и позволяет проводить измерения в отдельном нейроне. Эти микроэлектроды изготавливаются из стекла. Внутреннюю поверхность конца оттянутого капилляра покрывают гидрофобным силиконовым лаком. Такие электроды используют для изучения механизмов нервных импульсов путем контроля транспорта К+- и С1--И0Н0В. Однако эти электроды не позволяют проводить измерения в клетках очень малого объема, например в клетке желудочка лягушки, имеющей объем 10- мкл. В работе [319] предложена более совершенная для микроизмерений конструкция электродов. Получены электроды, диаметр конца которых меньше 0,1 мкм. [c.148]

    Очень мало известно о механизме биологического действия гормонов, хотя, естественно, он будет различным у разных гормонов. Многие гормоны, в частности соединения пептиднобелковой природы, оказывают влияние на проницаемость клеточных и субклеточных мембран, по всей вероятности, путем воздействия на определенные ферменты. Таким путем они регулируют различные процессы в живой клетке. Интересно, что при этом гормон не обязательно должен входить в клетку, он может прикрепляться к определенной ферментной системе, расположенной на клеточной поверхности, и посредством кооперативных эффектов вызывать какие-либо изменения внутри клетки (такой механизм иногда называют кнопочным ). Таким путем может регулироваться транспорт ионов различных металлов и ряда веществ (например, сахаров) через мембраны и оболочки. [c.105]


Смотреть страницы где упоминается термин Транспорт мембранный, определение: [c.469]    [c.389]    [c.68]    [c.292]    [c.488]    [c.478]    [c.141]    [c.181]    [c.50]    [c.166]    [c.4]    [c.43]    [c.134]    [c.104]    [c.104]    [c.232]   
Теоретические основы биотехнологии (2003) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Мембранные



© 2025 chem21.info Реклама на сайте