Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхательная цепь перенос протонов

    Следует пояснить, что при физиологических условиях (pH 7,4) стандартный окислительно-восстановительный потенциал системы Н2/2Н" + + 2ё равен -0,42 В. Поэтому в дыхательной цепи перенос электронов и протонов от биосубстрата к кислороду Е° == +0,82 В) начинает НАД Е° = -0,32 В). [c.325]

    Согласно хемиосмотической гипотезе, называемой также гипотезой Митчелла (рис. 7.10), молекулы дыхательной цепи располагаются в мембране векторно и различные стадии электронного переноса (от субстрата до кислорода) сопровождаются транспортом протонов наружу, что вызывает падение pH на внешней стороне мембраны по сравнению с внутренней. [c.180]


    Окисление формальдегида и формиата, зависимое от НАД, позволяет предполагать, что перенос пары электронов может быть связан с тремя трансмембранными перемещениями протонов. Полученные экспериментальные данные указывают, однако, на меньшие выходы АТФ. Вопрос о том, на каком уровне передаются электроны от формальдегида и формиата в дыхательную цепь, не вполне ясен. [c.397]

    Перенос электронов приводит к образованию трансмембранного протонного градиента, разрядка которого с помощью мембранной АТФ-синтазы сопровождается синтезом АТФ. Доказательством получения метанобразующими бактериями энергии в результате окислительного фосфорилирования служит подавление у них образования АТФ при действии разобщителей и ингибиторов АТФазы. Мало, однако, известно об электронных переносчиках. Не изучена организация дыхательной цепи и ее Н -переносящих участков. [c.430]

    Механизм окислительного фосфорилирования. Отданные субстратами восстановительные эквиваленты (протоны и электроны) переносятся на плазматическую мембрану или на внутреннюю мембрану митохондрий. Через мембрану они транспортируются таким образом, что между внутренней и внешней сторонами мембраны создается электрохимический градиент с положительным потенциалом снаружи и отрицательным внутри (рис. 7.8). Этот перепад заряда возникает благодаря определенному расположению компонентов дыхательной цепи в мембране. [c.235]

    Некоторые из этих компонентов переносят электроны, другие переносят водород. Взаиморасположение переносчиков в мембране таково, что при транспорте электронов от субстрата к кислороду протоны (Н ) связываются на внутренней стороне мембраны, а освобождаются на внешней. Можно представить себе, что электроны в мембране проходят зигзагообразный путь и при этом переносят протоны изнутри наружу. Эта система, транспортирующая электроны и протоны, получила название дыхательной или электрон-транспортной цепи. Иногда ее образно называют протонным насосом , так как главная функция этой системы— перекачивание протонов. [c.235]

    В природе широко распространены процессы ферментативного окисления. Оксидоредуктазы катализируют дегидрирование, оксидазы — электронный перенос, диоксигеназы — перенос О2 (к двойным связям С=С), а гидрокси-лазы — гидроксилирование связей С—Н кислородом. Дыхательной цепью называют ферментативную систему клеточного дыхания, в процессе которого водород переносится ступенчато от субстрата к молекулярному кислороду. При этом активные группы амида никотиновой кислоты и рибофлавина переносят в промежуточных стадиях атомы водорода (два электрона и два протона), а цитохромы переносят электроны. [c.9]


    В зависимости от типа субстрата окисления (т.е. от энергии отщепления пары е ) вьщеляют полную и укороченную дыхательные цепи (цепи переноса электронов — ЦПЭ). ЦПЭ — это универсальный конвейер по переносу протонов и электронов от субстратов окисления к кислороду. В полную ЦПЭ вступают субстраты II и III типов в укороченную — I. ЦПЭ встроены во внутреннюю мембрану митохондрий. , [c.116]

    Внутренняя мембрана митохондрий и дыхательная цепь (НАДН-дегидрогеназа, убихиноны, цитохромы), их структура и механизм переноса протонов и электронов на кислород. [c.142]

    ФМН и ФАД являются простетическими группами сложных белков флавопротеинов, катализирующих многочисленные реакции окисления веществ в клетках перенос электронов и протонов в дыхательной цепи, окисление пирувата, жирных кислот, биогенных аминов, альдегидов и др. (см. раздел II). ФМН и ФАД, восстанавливаясь, присоединяют от субстрата два электрона к атомам углерода изоаллоксазинового фрагмента, изменяя при этом их степени окисления. Одновременно два протона, полу- [c.147]

    Среди множества гипотез о механизме сопряжения фосфорилирования АДФ и дыхания заслуживает внимания хемиосмотическая теория, разработанная английским биохимиком П. Митчеллом (1961 г.). По мнению П. Митчелла, энергия переноса электронов и протонов через дыхательную цепь первоначально сосредотачивается в виде протонного потен циала, или электрохимического градиента концентраций ионов Н , возникающего при их переносе через клеточную мембрану компонентами дыхательной цепи. Протонный потенциал А Ян+ создается двумя компонентами осмотическим, возникающим вследствие разности концентраций протонов (АрН) по сторонам мембраны, и электрическим, обусловленным разностью электрических потенциалов (Аф) на поверхностях внутренней мембраны митохондрий  [c.325]

    Энергия, высвобождаемая в нроцессе переноса электронов по дыхательной цепи, запасается в форме электрохимического протонного градиента на внутренней мембране митохондрий [8] [c.441]

    Рнс. 7-30. Хиноны - важные переносчики электронов в дыхательной цепи Па каждый принятый электрон хинон захватывает из окружающей водной среды по одному протону при этом он способен переносить как один, так и два электрона. Когда хинон отдает свои электроны следующему переносчику, протоны высвобождаются. В митохондриях млекопитающих хинон представлен убихиноном (коферментом Q), показанным на рисунке длинный гидрофобный хвост, удерживающий убихинон в мембране, обычно состоит из 10 пятиуглеродных изопреновых единиц У растений соответствующим переносчиком служит пластохинон, который почти не отличается от убихинона. Для простоты убихинон и пластохинон [c.452]

    На рис. 7-34 показаны уровни окислительно-восстановительного потенциала на различных участках дыхательной цепи. Резкий перепад имеет место в пределах каждого из трех главных дыхательных комплексов. Разность потенциалов между любыми двумя переносчиками электронов прямо пропорциональна энергии, высвобождаемой при переходе электрона от одного переносчика к другому (рис. 7-34). Каждый комплекс действует как энергопреобразующее устройство, направляя эту свободную энергию на перемещение протонов через мембрану, что приводит к созданию электрохимического протонного градиента по мере прохождения электронов по цепи. Такое преобразование энергии можно прямо продемонстрировать, включив по отдельности любой изолированный комплекс дыхательной цепи в липосомы (см. рис. 7-25). В присутствии подходящего донора и акцептора электронов такой комплекс будет переносить электроны, что приведет к перекачиванию протонов через мембрану липосомы. [c.455]

    Существует несколько гипотез, объясняющих механизм сопряжения. Одной из них является хемиосмотическая теория. Цепь транспорта электронов функционирует как протонная (Н+) помпа, осуществляя перенос протонов из матрикса через внутреннюю мембрану в межмембранное пространство. Эндоэргический процесс выброса протонов из матрикса возможен за счет экзоэргических окислительно-восстановительных реакций дыхательной цепи. Перенос протонов приводит к возникновению разности концентрации с двух сторон митохондриальной мембраны более высокая концентрация будет снаружи и более низкая - внутри. Митохондрия в результате переходит в энергизованное состояние, так как возникает градиент концентрации Н+ и одновременно разность электрических потенциалов со знаком плюс на наружной поверхности. [c.177]

    Фосфорилирование в дыхательной цепи. Регенерация АТР при фосфо-рилировании в дыхательной цепи и фотосинтетическом фосфорилирова-нии протекает в мембранах. АТР-синтаза, так же как и компоненты дыхательной цепи, является составной частью мембраны. Каким образом происходящий в дыхательной цепи перенос водорода и эдйстронов сопряжен с синтезом АТР, до конца еще не выяснено. Однако многочисленные эксперименты показали, что регенерация АТР происходит только в пространствах, окруженных со всех сторон мембранами,-в пузырьках, или везикулах. Процессы переноса водорода и электронов теснейшим образом сопряжены с перемещением протонов, а этот процесс в свою очередь необходим для регенерации АТР. [c.243]


    Если АТР-синтетаза в норме не транспортирует П из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит через эту мембрану протоны, создавая гаким образом электрохимический протонный градиент, доставляющий энергию для синтеза АТР. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды - пока весь кислород не израсходуется Во время такой вспышки дыхания с помощью чувствительного рП-электрода можно зарегистрировать внезапное подкислепие среды в результате выталкивания ионов П из матрикса митохондрий. [c.450]

    Если АТР-синтетаза в норме не транспортирует из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит протоны через эту мембрану, создавая таким образом электрохимический протонный градиент, который в свою очередь приводит в действие АТР-синтетазу. При определенных условиях можно экспериментально продемонстрировать способность дыхательной цепи откачивать протоны из матрикса. Можно, например, обеспечить взвесь изолированных митохондрий подходящим субстратом для окисления, а поток протонов через АТР-синтетазу блокировать соответствующим ингибитором. В анаэробных условиях небольшая добавка кислорода к такому препарату вызовет вспышку дыхательной активности, которая будет длиться одну-две секунды-пока весь кислород не израсходуется. Во время такой вспьппки дыхания с помощью чувствительного рН-электрода можно зарегистрировать внезапное подкисление среды в результате выталкивания ионов из матрикса митохондрий. Через одну-две минуты pH вернется к первоначальному уровню, так как протоны проходят через мембрану обратно по различным медленным каналам (рис. 9-29). [c.28]

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.
    Одним из компонентов дыхательной цепи митохондрий является коэнзим Q, или убихинон. Это соединение способно к редокс-превраще-ниям и присутствует в митохондриях в количествах, более чем на порядок превышающих содержание ферментов дыхательной цепи. Коэнзим Q акцептирует электроны от дегидрогеназ, локализованных во внутренней мембране митохондрий (сукцинат- и НАДН-дегидроге-назы), и передает их комплексу III (с. 415). Согласно хемиосмоти-ческой гипотезе Митчела, в процессе редокс-превращений коэнзим Q осуществляет векторный перенос протонов через мембрану в так называемом Q-цикле . Реакция переноса электронов и протонов с участием коэнзима Q в комплексе III сопровождается высвобождением энергии, достаточной для синтеза одной молекулы АТФ. [c.421]

    В состав обоих коферментов (НАД и НАДФ) входит никотин-амид, обеспечивающий перенос пары электронов или протонов от субстрата, например окисление этилового спирта в присутствии алкогольдегидрогеназы (рис. 9). К этой же группе относятся коферменты, содержащие флавины — флавинмононуклео-тид (ФМН) и флавинадениндинуклеотид (ФАД), которые участвуют в переносе электронов и водорода по дыхательной цепи. [c.30]

    Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи—утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии обслуживается соответствующим дыхательным переносчиком НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи (см. рис. 9.7). В дыхательной цепи происходит дискриминация протонов и электронов в то время как протоны переносятся через мембрану, создавая АрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее. [c.311]

    Завершающим этапом биологического окисления является тканевое дыхание, в результате которого происходит перенос водорода (протонов электронов) от субстрата (НАД-Н или сукцината) на молекулярный кис-лород. Этот процесс осуществляется при каталитическом участии системы коферментов, входящих в электроно-транспортную дыхательную цепь ми- I тохондрий животных тканей, последовательно осуществляющих реакции окислительно-восстановительных превращений. [c.559]

    Известно несколько реакций, генерирующих Ар,н+. У разных групп прокариот от 1 до 3 из них локализованы в дыхательной цепи. На 2 или 3 этапах АЦн+ генерируется в темновых реакциях переноса электронов в фотосинтетической цепи. Образование АЦн+ происходит при гидролизе АТФ в Н -зависимой АТФ-синтазной реакции. К числу устройств, генерирующих АДн+ посредством трансмембранного переноса Н , относится бактериородопсин галофильных архебактерий. У некоторых фупп прокариот обнаружена локализованная в мембране неорганическая пирофосфатаза, катализирующая расщепление и синтез пирофосфата. Расщепление последнего приводит к генерированию АДн+- Наконец, источником АДн+ на ЦПМ прокариот могут быть процессы, связанные с выделением во внешнюю среду продуктов брожения, транспорт которых через мембрану происходит вместе с протонами. [c.102]

    В митохондриях на 3 участках окислительной цепи происходит выделение протонов во внещнюю среду. Соответственно 3 реакции ведут к образованию ДЦн+ (рис. 96). Первая локализована в начале дыхательной цепи и связана с функционированием НАД(Ф) Н2-дегидрогеназы. Второй генератор ДДн+ определяется способностью убихинона переносить водород. Последний локализован в конце дыхательной цепи и связан с активностью цитохромоксидазы. [c.365]

    Затем с рустицианина они передаются на цитохром с, локализованный на внешней стороне ЦПМ, а с него на цитохром а,, расположенный на внутренней стороне мембраны. Перенос электронов с цитохрома на сопровождающийся поглощением из цитоплазмы 2Н , приводит к восстановлению молекулярного кислорода до Н2О. Особенность дыхательной цепи Т. ferrooxidans — отсутствие переноса через мембрану протонов, а перенос только электронов. Градиент Н+ по обе стороны ЦПМ поддерживается как за счет поглощения протонов из цитоплазмы, так и в результате низкого pH внешней среды, в которой [c.379]

    Электроны от NH20H поступают в дыхательную цепь на уровне цитохрома с и далее на терминальную оксидазу. Их транспорт сопровождается переносом 2 протонов через мембраргу, приводящим к созданию протонного градиента и синтезу АТФ. Гидроксиламин в этой реакции, вероятно, остается связанным с ферментом. [c.382]

    С помощью этих ферментов электроны передаются в дыхательную цепь. В качестве компонентов электронтранепортной цепи идентифицированы FeS-белки (ферредоксины, рубредоксин), флаводоксин, менахинон, цитохромы типа Ь, с. Особенностью дыхательной цепи многих сульфатвосстанавливающих эубактерий является высокое содержание низкопотенциального цитрохрома Сз( 0= -300 мВ), которому приписывают участие в акцептировании электронов с гидрогеназы. Все перечисленные выше соединения, вероятно, принимают участие в переносе электронов на sor, но точная их последовательность и локализация на мембране не установлены. Получены данные, указывающие на то, что окисление Нз происходит на наружной стороне мембраны, а реакция восстановления S0 — на внутренней. Из этого следует, что окисление Нз, сопряженное с восстановлением SO , связано с трансмембранным окислительно-восстановительным процессом. Перенос электронов по дыхательной цепи сопровождается генерированием А)1н+. На это указывает чувствительность процесса к веществам, повышающим проницаемость мембраны для протонов и делающим, таким образом, невозможным образование протонного градиента, а также к ингибиторам мембран-связанной протонной АТФ-синтазы. [c.391]

    Б дыхательной цепи денитрификаторов при переносе электронов на нитрат функционируют 2 генератора Арн+ (вместо 3 при переносе электронов на О2). Процесс восстановления нитрата до нитрита локализован на внутренней стороне ЦПМ. По другим данным, ферментный комплекс имеет трансмембранную ориентацию, в результате чего поглощенные из цитоплазмы протоны переносятся на противоположную сторону, где участвуют в нит-ратредуктазной реакции. В любом из вариантов это приводит к [c.406]

    Цитохромы-окислительно-восстановительные системы, переносящие только электроны водород они не транспортируют. К цитохромам электроны поступают от пула хинонов. При переносе электронов эквивалентное им число протонов переходит в раствор. В качестве простети-ческой группы цитохромы содержат гем (рис. 7.9, Г). Центральный атом железа геминового кольца участвует в переносе электронов, изменяя свою валентность. Цитохромы окрашены они отличаются друг от друга спектрами поглощения и окислительно-восстановительными потенциалами. Различают цитохромы а, а , Ь, с, о и ряд других. В цитохроме с группы гема ковалентно связаны с цистеиновыми остатками апопро-теина благодаря такой прочной связи он растворим в воде и его можно экстрагировать из мембраны солевыми растворами. Цитохром с найден почти у всех организмов, обладающих дыхательной цепью. Что касается распространенности других цитохромов, то тут существуют заметные различия. [c.238]

    Оксидазы — ферменты, катализирующие реакции переноса водорода иди электронов непосредственно на кислородные атомы. Относятся к классу оксидоредуктаз н называются еще аэробными дегидрогеназами. Основным путем переноса водорода и электронов в клетке является дыхательная цепь, где важнейшую роль в завершении процесса тканевого дыхания играет цйтохромоксидаза. Электроны от восстановленной формы цитохромоксидазы переходят на молекулы кислорода. Молекулярный кислород, присоединивший электроны, превращается в отрицательно заряженный ион. С отрицательно заряженным (активированным) кислородом соединяются положительно заряженные протоны водорода, которые образовались при отщеплении от водорода" электронов и находятся в растворе. В результате образуется молекула воды. [c.118]

    Определение. Синтез АТФ из АДФ и неорганического фосфата, сопряженный с переносом протонов и электронов по дыхательной цепи от субстратов к кислороду, называется окислительным фосфо-рилированием. Для количественного выражения окислительного фосфорилирования введен коэффициент окислительного фосфори-, лирования. Он представляет собой отношение числа молекул неорганического фосфата, перешедших в состав АТФ в процессе дыхания, на каждый поглощенный атом кислорода. Отношение Р/0 для полной дыхательной цепи равно 3, для укороченной — 2. Эксперименты проводились следующим образом к митохондриям добавляли различные субстраты и оценивали образование АТФ (убыль молекул неорганического фосфата) на каждый поглощенный атом кислорода при предоставлении субстратов, дегидрируемых НАД-зависимы-ми дегидрогеназами Р/0=3 (полная ЦПЭ — 3 АТФ на 1 атом кислорода) при внесении субстратов, дегидрируемых ФАД-зависимыми дегидрогеназами Р/0=2 (укороченная ЦПЭ — 2 АТФ на 1 атом кислорода) при введении в реакцию аскорбиновой кислоты, которая поставляет электроны сразу на цитохром с Р/0=1 ( I АТФ на 1 поглощенный атом кислорода). [c.127]

    Внутренняя мембрана митохондрий образует многочисленные складки, выступающие внутрь матрикса, которые называются кристами. Кристы увеличивают общую поверхность внутренней мембраны в несколько раз. Структура крист создает возможность упорядоченного расположения на ней многочисленных белков-ферментов. Во внутренней мембране находятся главные ферментные комплексы, участвующие в передаче электронов на кислород (дыхательная цепь) и обеспечивающие процесс окисления. На ее поверхности, обращенной в сторону матрикса, находятся ферменты, осуществляющие синтез АТФ за счет энергии процесса окисления (АТФ-синтетазный комплекс). Внутренняя мембрана митохондрий регулирует перенос метаболитов в матрикс и выход из него таких веществ, как АТФ, АДФ, отдельных аминокислот, жирных кислот, ионов Са и др. Эта мембрана практически непроницаема даже для многих малых молекул, так как на ней создается электрохимический градиент протонов водорода (Н+). [c.51]

    Водород, отнятый дегидрогеназами в цикле, передается в дыхательную цепь ферментов, которая у аэробов включает ФАД, систему цитохромов и конечный акцептор водорода кислород. Передача водорода по этой цепи сопровождается образованием АТФ. При этом на каждые два атома водорода синтезируются три молекулы АТФ. Образование АТФ одновременно с процессом переноса протона и электрона по дыхательной цепи ферментов называется окислительным фосфорилированнем. Суммарно при полном окислении моля глюкозы образуется 38 молекул АТФ. Из них 24 при окислении ПВК в цикле Кребса с передачей водорода в дыхательную цепь ферментов. Таким образом, основное количество энергии запасается именно на этой стадии. Замечательно то, что цикл Кребса универсален. Такой тип окисления характерен и для простейших, и для бактерий, и для клеток высших животных и растений. [c.62]

    Таким образом, окисление, сопряженное с фосфорилированием,— это окислительная реакция, при которой перенос электрона в дыхательной цепи сопряжен с синтезом АТФ из АДФ и неорганического фосфата. Окислительное фосфорилирование является одним нз важнейших путей аккумуляции энергии в живых организмах. Синтез АТФ из АДФ в процессе тканевого дыхания, точнее, при переброске электронов и протонов от окисляемого субстрата через цепь дыхательных катализаторов к кислороду, был открыт в. А. Белицером и Е. Т. Цыбаковой (1938—1939). Особенности этого процесса привлекают внимание многих исследователей. Работами многих авторов (Грина, Ленинджера, Лар-ди, Очоа, Слейтера) установлено, что ферменты тканевого дыхания и сопряженного с ним окислительного фосфорилирования сосредоточены в митохондриях. Митохондрии стали рассматривать как важнейшие компоненты клетки (органоиды), основной функцией которых является снабжение клетки и ее работающих механизмов. [c.368]

    KoQlo является обязательным компонентом дыхательной цепи благодаря своей растворимости в жирах он осуществляет перенос водорода в гидрофобной мембране митохондрий (см. главу 10). Перенос водорода основан на легкообратимом восстановлении КоО, который способен окисляться за счет восстановления биосубстратов, а также связывать возникающие в клетках свободные радикалы, протоны и электроны  [c.143]

    Благодаря этому восстановленный ФМНН2 переносит протоны от внутренней поверхности мембраны к внешней. На этом участке дыхательной цепи пути электронов и протонов расходятся протоны выделяются в межмембранное пространство, а два электрона переносятся от ФМНН2 к связанному с ним железосерному белку Ре8Пр1, а затем через цитохром 562 — на убихинон (КоО)  [c.322]

    Дыхательная цепь — ферментативный комплекс, образованный окси-доредуктазами, локализованными в липидном слое внутренней мембраны митохондрий и осуществляющими перенос электронов и протонов от биосубстратов к О2. [c.551]

    Природа взаимодействия между АТРазой и компонентами дыхательной цепи неясна. Высказывалось предположение, что оно осуществляется благодаря образованию интермедиато [493], и косвенные данные, полученные на основании спектральных исследований, действительно указывают на то, что некоторые цитохромы могут претерпевать изменения в процессе катализируемых ими реакций, связанных с запасанием энергии [1187]. Важную роль в осуществлении этого взаимодействия может играть близость расположения АТРазы и компонентовдыхательной цепи, встроенных в мембрану митохондрий, поскольку благодаря ему могут происходить взаимозависимые конформационные изменения соответствующих компонентов, которые в свою очередь могут послужить основой для синтеза АТР при окислительном фосфорилировании [512, 4320]. Согласно другой точке зрения, взаимодействие является не столь прямым и осуществляется благодаря формированию электрохимического градиента протонов. Митчелл предположил, чт синтез АТР связан с трансмембранным переносом протонов и что фермент митохондрий может быть специализированной формой катионпереносящих АТРаз, наличие которых установлено в разных мембранах [3184], С учетом всего этого были предложены различные гипотетические механизмы [3185, 5263]. [c.79]

    В полностью сопряженной системе, когда = 1, J2 также обраш ается в нуль. Подобная взаимосвязь сопрягаюш его и сопряженного потоков наблюдается на митохондриях в системе дыхательного контроля , где проявляется зависимость скорости окисления субстрата J2 от изменения соотношения АДФ/АТФ, т. е. от дви-жуш ей силы сопряженного процесса Х. Известно, что степень дыхательного контроля есть отношение окисления субстрата в условиях фосфорилирования (состояние 3 митохондрий) дыхательной цепи к той же скорости, когда концентрация АДФ равна нулю и видимое фосфорилирование исчезает (состояние 4 митохондрий). В состоянии 4 нет результируюш его переноса протонов и образования АТФ (71 = 0), а градиент трансмембранного потенциала достигает максимальных значений (Хх = . В состоянии 4 таких образом энергия тратится не на видимую [c.136]

    Перенос электронов по дыхательной цепи начинается с отнятия гидрид-иона (П ) от NADH при этом регенерируется NAD , а гидрид-ион превращается в протон и два электрона (П П + 2е). Эти электроны переходят на первый из более чем 15 различных переносчиков электронов в дыхательной цепи. В этот момент электроны обладают очень большой энергией, запас которой постепенно уменьшается по мере прохождения их по цепи. Чаще всего электроны переходят от одного атома металла к другому, причем каждый из этих атомов прочно связан с белковой молекулой, которая влияет на его сродство к электрону. Разнообразные типы переносчиков электронов в дыхательной цепи будут подробно рассмотрены позднее (разд. 7.2.5). Важно отметить, что все белки - переносчики электронов - группируются в три больших комплекса дыхательных ферментов, каждый из которых содержит трансмембранные белки, прочно закрепляющие комплекс во внутренней мембране митохондрии (см. разд. 12.Ь). Каждый последующий комплекс обладает большим сродством к электронам, чем предыдущий. Электроны последовательно переходят с одного комплекса на другой, пока наконец не перейдут на кислород, имеющий наибольшее сродство к электрону. [c.441]

Рис. 7-34. Возрастание редокс-потенциала (обозначаемого Е о или Е ) по мере прохождения электронов по дыхательной цепи к кислороду. На оси ординат справа - величины стандартной свободной энергии переноса каждого из двух электронов, отдаваемых одной молекулой NADH [AG = - п (0,023)АЕп, где п - число переносимых электронов при перепаде редокс-потенциала АЕо мВ]. В каждом дыхательном ферментном комплексе электроны последовательно проходят через четыре или большее число переносчиков. Как уже говорилось, часть высвобождаемой энергии используется каждым ферментным комплексом для перекачивания протонов через внутреннюю митохондриальную мембрану. Число протонов, Рис. 7-34. Возрастание <a href="/info/2695">редокс-потенциала</a> (обозначаемого Е о или Е ) по мере прохождения электронов по <a href="/info/99457">дыхательной цепи</a> к кислороду. На оси ординат справа - величины <a href="/info/360652">стандартной свободной энергии</a> переноса каждого из <a href="/info/1696521">двух</a> электронов, отдаваемых одной молекулой NADH [AG = - п (0,023)АЕп, где п - число переносимых электронов при перепаде <a href="/info/2695">редокс-потенциала</a> АЕо мВ]. В каждом <a href="/info/509465">дыхательном ферментном комплексе</a> <a href="/info/105795">электроны последовательно</a> <a href="/info/336204">проходят через</a> четыре или <a href="/info/831964">большее число</a> переносчиков. Как уже говорилось, часть высвобождаемой <a href="/info/1435378">энергии используется</a> каждым <a href="/info/509465">ферментным комплексом</a> для <a href="/info/105341">перекачивания протонов</a> <a href="/info/1900631">через внутреннюю митохондриальную</a> мембрану. Число протонов,

Смотреть страницы где упоминается термин Дыхательная цепь перенос протонов: [c.348]    [c.361]    [c.478]    [c.245]    [c.405]    [c.364]    [c.442]   
Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Дыхательные яды

Цепи с переносом



© 2024 chem21.info Реклама на сайте