Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения хрома неорганическими реагентами

    Как и в случае анализа неорганических соединений, методы восстановления определяемых органических соединений применяют реже, чем методы титрования окислителями. Чаще всего в качестве титрантов пользуются соединениями титана (III). Примеры титрования органических соединений ионами Т1 1 описаны более чем в сорока научных работах. Известно более чем десять случаев применения в качестве титрантов соединений железа (II), ванадия (II), дитионита и тиосульфата. К числу других, реже применяемых реагентов, относятся соединения хрома (II) и олова (II), сульфид единственный органический реагент — аскорбиновая кислота, кроме того, используют газообразный водород и прямое электролитическое восстановление. [c.62]


    Фотометрические методы определения хрома находят очень широкое применение при анализе сталей, горных пород и руд, содержащих < 0,01% Сг. Фотометрическое определение хрома проводят по светопоглощению его ионов и соединений с различными неорганическими и органическими реагентами. [c.41]

    В соответствии с данным выше определением окислителями являются следующие сильные электрофильные реагенты азотная кислота, кислород и его соединения (перекись водорода, перекиси металлов, неорганические и органические надкислоты), сера, двуокись селена, хлор, бром, кислоты типа хлорноватистой, хлорная, йодная кислота, соединения металлов высших степеней валентности (соединения трехвалентного железа, двуокись марганца, перманганат калия, трехокись хрома, хромовая кислота, перекись свинца, тетраацетат свинца). [c.332]

    Из приведенных примеров видно, что неполноту окисления углерода может обусловливать не только термическая стойкость вещества, но и легкость разрушения неорганических фрагментов молекулы. Отсюда можно сделать вывод, что благоприятные условия для быстрого окисления несгоревшего углерода создает присутствие в зоне сожжения окислителя, обладающего одновременно способностью давать расплавы с оксидами гетероэлементов, мешающими окислению. При этом образуется жидкая фаза, в которой окислитель, несгоревшие частицы вещества и оксид гетероэлемента равномерно распределены друг в друге. Наиболее подходящим реагентом такого типа является оксид свинца(П), который устойчив при нагревании от 600 до 1000 °С, индифферентен к СОг и негигроскопичен. Он плавится при 884 °С и находится в зоне сожжения в расплавленном состоянии. Оксид свинца(II) является одновременно и окислителем, и плавнем, и катализатором окисления углерода. Эти свойства дают ему очевидное преимущество при анализе элементоорганических соединений перед часто применяемыми неплавкими окислителями — оксидами кобаль-та(11,1П), никеля(П) и хрома (III) (табл. 1). [c.63]

    ХИМИЧЕСКИЙ АНАЛИЗ — анализ материалов с целью установления качественного и количественного состава их. На научной основе используется с 17 в. Осн. разделы X. а,— качественный и количественный анализьь Цель качественного анализа обнаружить, какие элементы, ионы или хим. соединения содержатся в анализируемом веществе. Качественный X. а. неорганических веществ основан на проведении хим. реакций, сопровождающихся каким-либо эффектом, непосредственно воспринимаемым экспериментатором — образованием труднорастворимых или окрашенных соединении, выделением газообразных веществ и др. Обычно анализируемое вещество сначала растворяют в воде или в к-тах, а затем проводят т. н. систематический анализ, к-рый заключается в последовательном выделении из раствора под действием спец. групповых реагентов малорастворимых соединений нескольких хим. элементов. Так, раствор соляной к ты выделяет хлориды серебра, свинца и одновалентной ртути. При действии сероводорода в кислом растворе осаждаются сульфиды мышьяка, олова, сурьмы, ртути, меди, висмута и кадмия. Раствор сернистого аммония выделяет из нейтрального раствора сульфиды и гидроокиси никеля, кобальта, алюминия, железа, марганца, хрома, цинка и некоторых др. элементов. При действии карбоната аммония [c.686]


    Очистка растворителями. Реагентами, используемыми для очистки подложек, служат водные растворы кислот и щелочей, а также такие органические растворители, как спирты, кетоны и хлористые углеводороды. Эффект очистки кислотами обусловлен превращением некоторых окислов и жиров в растворимые в воде соединения. Щелочные агенты растворяют жиры омыливанием, что делает их смачиваемыми в воде. Однако использование кислот и щелочей имеет свои ограничения. Их способность реагировать со стеклами была обсуждена в разд. 4В. Для химически инертных и слабо травящихся подложек нужно принимать меры против образования осадков и адсорбции молекул растворителя. Неорганические соединения часто бывают нелетучими и, следовательно, последующим нагревом в вакууме не могут быть удалены. Примером может служить удержание адсорбированного хрома на поверхностях стекла, очищенного "в горячих смесях серной и хромовой кислот. В растворах плавиковой кислоты, часто используемых для удаления нерастворимых осадков путем растворения тонкого слоя нижележащего стекла, образуются загрязнения в виде сильно адсорбированного фтора [97]. Индикатором этого является фтор, наблюдаемый в масс-спектрометре даже после того, как обработанное стекло было прогрето в вакууме при 325° С в течение 36 ч [98]. Проблема выпадения осадка может возникнуть и при использовании органических растворителей. Патнер [99] наблюдал слабую адгезию пленки на стеклянных подложках, очищенных четыреххлористым углеродом и трихлорэти-леном. После очистки поверхность покрывалась беловатым осадком, который не мог быть удален нагревом. Именно поэтому установлено, что хлоридные пленки образуются реакцией стекла с растворителями. [c.538]


Смотреть страницы где упоминается термин Соединения хрома неорганическими реагентами: [c.26]   
Аналитическая химия хрома (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Неорганические реагенты



© 2025 chem21.info Реклама на сайте