Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность, тепло тела с конечной теплопроводностью

    В феноменологической теории теплопроводности предполагается, что скорость распространения тепла является бесконечно большой. Это предположение подтверждается результатами расчета температурных полей в различных телах при обычных условиях, встречающихся в практике. Однако в разреженных средах при высокоинтенсивных нестационарных процессах теплообмена необходимо учитывать, что тепло распространяется не бесконечно быстро, а с некоторой, хотя и очень большой, но конечной скоростью w . На это впервые обратил внимание П. Вернотт [117]. Независимо от него автором книги была предложена гипотеза о конечных скоростях распространения тепла и массы для тепло- и влагопереноса в капиллярно-пористых телах [44]. [c.11]


    Теплопередача может осуществляться посредством теплопроводности, конвекции или излучения. Теплопроводность — процесс передачи тепла через твердое тело, например через стенку колбы. Конвекция возможна там, где частицы веществ не имеют фиксированного положения, т. е. в жидкостях и газах. В этом случае тепло переносится при помощи движущихся частиц. Излучение — это передача тепла тепловыми лучами с длиной волны в пределах 0,8—300 мкм. Чаще всего теплопередача осуществляется одновременно всеми тремя способами, хотя, конечно, не в равной мере. [c.14]

    Кроме процессов переброса и рассеяния фононов на границах кристаллитов (или на внешних границах образца) существуют и другие виды рассеяния фононов, приводящие к конечному тепловому сопротивлению. Рассмотрение теплопроводности аморфных тел сопряжено со значительными трудностями, которые обусловлены отсутствием трансляционной симметрии в расположении атомов, то есть отсутствием дальнего порядка. Уже в силу этого отличия аморфных тел от кристаллов можно было ожидать, что механизм переноса тепла в них будет иной, чем в кристаллах. [c.145]

    Более "быстрыми по сравнению с теплопроводностью являются лучистый и конвективный перенос тепла, последний япя многих высушиваемых тел исключен. Нагреву подвергаются тела, содержащие воду. Вода имеет характерный максимум диэлектрической проницаемости в области СВЧ диапазона электромагнитных волн. Выбор воздействия СВЧ электромагнитного поля является в решении данной задачи физически оптимальным. Дальнейшее ускорение процесса сушки может быть достигнуто при использовании вибраций или акустического поля, ускоряющими перенос влаги к поверхности и ее удаление от поверхности тела [6]. При решении более общей задачи необходимо рассмотреть все возможные физические явления, приводящие к конечной цели. [c.9]

    Заметим, что потенциальное течение жидкости и потенциальное течение тепла математически подобны одно другому в обоих случаях двухмерные сетки линий тока или линий теплового потока и эквипотенциальных кривых или изотерм определяются аналитическими функциями. Физически, однако, между указанными видами течений имеется значительное различие. Ортогональные сетки, описанные в разделе 4.3, относятся к жидкостям и газам, в которых отсутствует вязкость, и, следовательно, эти сетки нельзя применять для расчета потоков количества движения (сопротивления трения) на твердых поверхностях. Сетки же, анализируемые в данном параграфе, относятся к твердым телам, обладающим конечной теплопроводностью, поэтому с помощью таких сеток можно вычислить скорость теплообмена на всех поверхностях. Кроме того, распределения скоростей, полученные в разделе 4.3, не удовлетворяют уравнению Лапласа, тогда как разбираемые ниже профили температур являются решениями этого уравнения. Читатели, желающие ознакомиться с другими физическими процессами, описываемыми уравнением Лапласа, могут найти интересную сводную таблицу в монографии 118]. [c.339]


    Потеря последних сотен электрон-вольт энергии атомом отдачи происходит в действительности по более тонкому механизму [19, 21]. Однако конечный результат сводится к тому, что в случае ионной решетки атом отдачи будет задержан в горячей области объемом в несколько сот атомов, в которой рассеяна (в отличие от горячей области по модели Либби) лишь небольшая часть начальной энергии атома отдачи, зависящая как от величины 2 этого атома, так и от величины 2 атомов среды. Вследствие этого горячая область находится при температуре выше точки плавления в течение такого незначительного промежутка времени (10 сек.), что даже не достигается беспорядок, присущий жидкому состоянию. В случае молекулярных кристаллов, благодаря меньшей теплопроводности и более низкой температуре плавления, горячая область будет больше по объему и будет дольше находиться в расплавленном виде, в результате чего достигается большая близость к жидкому состоянию. Поскольку жидкости проводят тепло лучше, чем твердые тела, длительность существования горячей области в случае жидкой фазы будет меньше, чем в случае твердой фазы. [c.321]

    Первое представление о мгновенном точечном источнике тепла, т. е. о конечном количестве тепла, мгновенно выделяемом в заданной точке неограниченного тела в определенный момент времени встречается в работе Кельвина [151]. Метод мгновевных источников получил большое развитие и практическое приложение к коикрет-ным задачам теплопроводности в трудах Карслоу, Егера [3], А. В. Лыкова [14], В. Л. Шевченко [23], М. В. Кулакова [157] и других исследователей. [c.178]

    Величина А5 = 52— 5] зависит только от начального и конечного состояний и не зависит от характера процесса, так как 5 является функцией состояния. Величина же д, т. е. количество тепла, полученного системой и превращенного в работу, зависит от того, обратим данный процесс или нет. В любом реальном необратимом процессе часть тепла теряется и не превращается в работу из-за теплопроводности, трения и других причин. Поэтому для таких необратимых процессов А8 >д/Т. С помощью второго закона термодинамики можно доказать, что уравнение (П.З) справедливо не только для идеального газа, но и для любого реального вещества. Таким образом, для любого тела при любом изотермическом процессе [c.34]

    Конечно, теплообмен излучением может происходить одновременно с теплообменом путем конвекции и теплопроводности. Накопление тепла во всех телах выражается уравнением [c.193]


Смотреть страницы где упоминается термин Теплопроводность, тепло тела с конечной теплопроводностью: [c.427]   
Основные формулы и данные по теплообмену для инженеров Справочник (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Теплопроводность, тепло



© 2024 chem21.info Реклама на сайте