Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловое излучение теплообмен

    Конвективный теплообмен, теплопроводность, тепловое излучение [c.273]

    Теплообмен в рабочей камере печи осуществляется тремя видами — теплопроводностью, конвекцией и тепловым излучением, любым их сочетанием или всеми видами одновременно, однако один вид теплообмена всегда преобладает над другими во всем объеме или в определенной зоне печи. [c.56]

    Теплообмен в рабочей камере футеровки дуговых электропечей осуществляется между всеми элементами термической системы материал—среда—футеровка . Теплота передается по всем перечисленным выше механизмам теплообмена. Тепловым излучением передается теплота от главного источника — столба горящей дуги, который представляет собой ионизированный газ печной среды, а также расплав шлака, т. е. жидкой фазы среды. В конвективном теплообмене участвует н газовая печная среда, образовавшаяся в зоне горения дуг и состоящая из паров металла, и твердая фаза (шлак, графит), и жидкая среда. [c.61]


    ТЕПЛООБМЕН ПРИ ТЕПЛОВОМ ИЗЛУЧЕНИИ [c.593]

    Теплообмен при тепловом излучении [c.593]

    В дальнейшем буквой а будем обозначать приведенный коэффициент теплоотдачи, учитывающий распространение тепла конвективным теплообменом и тепловым излучением. [c.148]

    Процессы теплообмена имеют большое значение в химической, энергетической, металлургической, пищевой и других отраслях промышленности. В теплообменных аппаратах теплопередача от одной среды к другой через разделяющую их стенку обусловлена рядом факторов и является сложным процессом, который принято разделять на три элементарных вида теплообмена теплопроводность, конвекцию и тепловое излучение. На практике эти явления не обособлены, находятся в каком-то сочетании и протекают одновременно. Для теплообменников наибольшее значение имеет конвективный теплообмен или теплоотдача, которая осуществляется при совокупном и одновременном действии теплопроводности и конвекции. [c.112]

    Тепловое излучение — это процесс распространения электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать энергию, которая поглощается другими телами и снова превращается в тепло. Таким образом, осуществляется лучистый теплообмен он складывается из процессов лучеиспускания и луче-поглощения. [c.260]

    Твердые тела обладают сплошным спектром излучения они способны испускать волны всех длин при любой температуре. Однако интенсивность теплового излучения возрастает с повышением температуры тела, и при высоких температурах (примерно при 600 °С) лучистый теплообмен между твердыми телами и газами приобретает доминирующее значение. [c.270]

    В конце кислородной зоны вследствие того, что процесс приближается к адиабатному, температура близка к теоретической температуре горения. Под влиянием высокой температуры зола большинства топлив расплавляется. Углеродная поверхность не смачивается жидким шлаком, поэтому капли шлака образуют на ней небольшие шарики (см. рис. 7-12). Образуя более крупные капли, шлак стекает вниз навстречу потоку продуктов сгорания и воздуха и попадает в область все более низких температур. Интенсивный теплообмен с встречным сравнительно холодным потоком приводит к застыванию и грануляции шлака в нижних участках слоя. Постепенно шлак накапливается на поверхности колосникового полотна, образуя так называемую шлаковую подушку. В этой, самой нижней зоне происходит выгорание остатков углерода, поэтому ее часто называют зоной выжига шлака. Слой шлака защищает колосниковое полотно от действия теплового излучения со стороны горящих углеродных частиц, что одновременно с охлаждающим действием дутьевого воздуха обеспечивает надежную работу колосникового полотна. [c.227]


    Как известно, теплообмен является сложным процессом. При изучении теплообмена его расчленяют на более простые явления, различают три элементарных вида теплообмена теплопроводность, конвекцию и тепловое излучение. [c.7]

    Вопросы, связанные с теплопроводностью аа счет излучения, относятся к самостоятельному разделу учения о теплообмене — Тепловому излучению и поэтому в настоящей монографии не рассматриваются. [c.11]

    Тепловое излучение. При теплообмене излучением тепло распространяется в виде лучистой энергии. Выделяющееся тепло превращается в лучистую энергию, которая распространяется в пространстве, и в каком-нибудь другом месте полностью или частично превращается вновь в тепловую энергию. [c.280]

    Суммарная теплоотдача лучеиспусканием и конвекцией. В тех случаях, когда теплообмен происходит между твердым телом (стенкой) и газообразной средой, в расчетах необходимо учитывать одновременно с передачей тепла путем конвекции также и тепловое излучение. [c.322]

    Типовая задача. Имеется замкнутая система известной геометрии, состоящая из N изотермических поверхностей, имеющих температуры Т, и коэффициенты теплового излучения е. (/= 1,2, Требуется рассчитать лучистый теплообмен в такой системе, т. е. найти результирующие лучистые потоки резг для каждой поверхности. [c.196]

    Теплообмен излучением между двумя плоскими поверхностями бесконечной протяженности, между которыми помещены п слоев фольги, играющих роль тепловых экранов (рис. 2.27,6). Коэффициент теплового излучения экрана равен бэ и отличен в общем случае от коэффициентов излучения поверхностей В] и 82  [c.197]

    Прн теплообмене между неограниченными плоскопараллельными плоскостями приведенный коэффициент теплового излучения и угловые коэффициенты равны  [c.291]

    При теплообмене излучением в замкнутой системе из двух вогнутых серых тел приведенный коэффициент теплового излучения определяется выражением [c.291]

    Закономерности теплового излучения (радиации) описываются законами Стефана — Больцмана, Кирхгофа и Ламберта. В невидимой инфракрасной области с длиной волн 0,8...40 мкм может передаваться большое количество теплоты. Интенсивность теплового излучения возрастает с повышением температуры тела, а при температурах выше 600 °С теплообмен между твердыми телами и газами осуществляется путем лучеиспускания. [c.721]

    Обычно в теплообменниках происходит сочетание рассмотренных видов переноса теплоты, причем в разных частях аппарата это сочетание может происходить по-разному. Например, в паровом котле от топочных газов к поверхности кипятильных трубок теплота передается всеми видами переноса - тепловым излучением, конвекцией, теплопроводностью от внешней поверхности через слой сажи, металлическую стенку и слой накипи - только теплопроводностью и, наконец, от внутренней поверхности к кипящей воде теплота передается в основном конвекцией. Следовательно, отдельные виды теплопереноса в теплообменной аппаратуре протекают в самом различном сочетании, и разделить их между собой зачастую очень сложно. Поэтому в инженерных расчетах обычно рассматривают процесс переноса теплоты как одно целое. [c.264]

    Лучистый теплообмен. Теплообмен излучением представляет собой процесс передачи тепла от одного тела к другому путем испускания электромагнитных волн. Все тела излучают и передают лучистую энергию без участия передающей среды. Тепловое излучение несет тепловую энергию главным образом в видимой и инфракрасной части электромагнитного спектра. [c.13]

    В тепловых процессах распространение тепла осуществляется в большинстве случаев одновременно теплопроводностью, тепловым излучением и конвекцией. Если передача тепла происходит одновременно всеми этими способами или хотя бы двумя из них, такой процесс называют сложным теплообменом. [c.135]

    Теплопередача от более нагретой — теплой среды к менее нагретой — холодной среде через разделяющую их стенку происходит одновременно вследствие теплопроводности, конвекции и теплового излучения и представляет собой сложный теплообмен. [c.15]

    Важнейшим способом подвода тепла к реакционной смеси в таких производствах, как стекольное или в производстве мартеновской стали, является теплопередача излучением. Однако газы значительно лучше пропускают тепловое излучение, чем твердые вещества поэтому коэффициент теплопоглощения оказывается гораздо меньше. Вследствие этого в нефтехимической промышленности лишь в немногих случаях для нагрева реагирующих сырьевых потоков до высокой температуры используют в основном лучистый теплообмен. Тем не менее в одном процессе [28] псевдоожиженный твердый слой нагревается за счет теплопередачи излучением из отстойной секции, в которой тепло выделяется в результате процесса сгорания. [c.303]


    Распространению теплового излучения в порошках препятствует, вероятно, экранирующее действие частиц порошка, образующих систему малоэффективных (главным образом из-за прозрачности порошков), но многочисленных экранов. В пространстве, заполненном п экранами, лучистый теплообмен, как это следует из уравнения (33), пропорционален Vn+1, уменьшается с увеличением расстояния между граничными поверхностями и почти не зависит от степени их черноты [128]. Установлено, что суммарный тепловой поток через вакуумнопорошковую изоляцию пропорционален толщине слоя изоляции, поэтому свойства ее принято характеризовать эффективным коэффициентом теплопроводности, являющимся функцией температуры. Обычно пользуются средних эффективным, или кажущимся, коэффициентом теплопроводности в определенном температурном диапазоне. Кажущийся коэффициент теплопроводности А, при толщине слоя изоляции более 2—3 см. практически не зависит от толщины и почти не зависит от степени черноты граничных поверхностей. При меньшей толщине коэффициент возрастает из-за непосредственного проникновения излучения сквозь относительно небольшое число полупрозрачных частиц. С увеличением плотности проницаемость порошков снижается и зависимость коэффициента теплопроводности от степени черноты становится более слабой. [c.115]

    Различают три вида теплообмена теплопроводность, конвекцию и тепловое излучение. Теплопроводностью называется явление переноса тепла путем непосредственного соприкосновения между частицами с различной температурой. К этому виду относится передача тепла в твердых телах, например, через стенку аппарата. Конвекцией называется явление переноса тепла путем иеремеш,епия частиц жидкости или газа и перемешивания их между собой. Теплообмен может осуществляться также посредством лучеиспускания — переноса энергии подобно свету в виде электромагнитных волн. [c.25]

    Теплообмен в замкнутой системе серых тел с заданными оптико-геометрическими характеристиками описывается системой N алгебраических уравнений (2.195). Электрическое моделирование основано на математической тождественности этой системы и системы алгебраических уравнений, описывающей распределение токов в разветвленной электрической цепи с N узловыми точками (рис. 8.8). Каждая узловая точка связана с остальными точками электрическими проводимостями (величинами, обратными электрическим сопротивлениям) Уц, а с индивидуальным источником питания с потен-. циалами г о —через проводимость ц. Проводимости У а являются электрическими аналогами взаимных поверхностей излучения Нц, а проводимости У а — аналогами оптико-геометрических параметров Нц = —Лг), где Лг — коэффициент поглощения, принимаемый равным коэффициенту теплового излучения 8,, — площадь поверхностй г-го- тела. Электрические потенциалы в узловых точках и,- являются аналогами плотности эффективных потоков излучения Еэфг, а токи в узловых точках 1% — аналогами результирующих тепловых потоков СЗроэг для соответствующих тел. [c.406]

    При подготовке оптич. системы к измерению трубку наводят на раскаленное тело и передвигают объектив до получения четкого изображения тела и нити лампы. Включив источник тока, реостатом регулируют яркость нити до тех пор, пока ее средняя часть не сольется с освещенным телом. В момент выравнивания яркостей тела и нити, когда последняя становится неразличимой, прибор показывает т.наз. яркостную т-ру тела (равна т-ре абсолютно черного тела того же углового размера, что и излучающее тело, и дающего такой же поток излучения на данной длине волвы). Эту т-ру (TJ отсчитывают по одной из шкал отградуированного в градусах милливольтметра верхней-без серого светофильтра (для т-р 800-1400 °С) и нижней со светофильтром (для т-р св. 1300°С). Погрешность до 1% от диапазона измерений. По известной истинную т-ру тела определяют на основе законов теплового излучения (см. Теплообмен). [c.540]

    Используя табличные данные о степени чериоты углекислого газа и водяного пара, можно рассчитывать тепловое излучение газообразных продуктов горения при условии полного сгорания топлива так, например, можно рассчитывать теплообмен поверхностей нагрева водотрубных паровых котлов. Обычно лучеиспуска ние факела бывает на практике гораздо интенсивнее, чем дают расчеты, основанные па определении количеств углекислоты и водяного пара в пламени. [c.510]

    Распространяясь прямолинейно со скоростью света, тепловые лучи подчинаются всем геометрическим законам оптики (поглощение, отражение, преломление). Способностью теплового излучения и поглощения обладают все тела с температурой выше О К, т. е. все тела непрерывно излучают и поглощают лучистую энергию. При этом с ростом температуры тела соответственно его внутренней энергии увеличивается интенсивность излучения. Последняя весьма велика у твердых и жидких тел, причем в лучистом теплообмене участвуют лишь их тонкие поверхностные слои и тепловое излучение можно практически считать поверхностным явлением. Газы и пары отличаются объемным характером [c.304]

    Тепловое (инфракрасное) излучение (радиационный теплообмен) имеет электромагнитную природу, поэтому оно может распространяться в любой среде, в том числе и в вакууме, а так же, как и другие электромагнитные излучения, распространяетея в изотропной среде со скоростью света по прямой. Для инфракрасного излучения справедливы и другие общие для электромагнитных излучений закономерности, в частности законы отражения и преломления (см. 4.6). С учетом этих особенностей в отличие от теплопроводности и конвекции тепловое излучение распространяется с чрезвычайно большой скоростью (по сравнению с этими процессами практически мгновенно). Поэтому скорость неразрушающего контроля с использованием теплового излучения определяется обычно инерционностью контрольно-измерительной аппаратуры или тепловых процессов в объекте контроля. Процесс теплового излучения так же, как теплопроводность (5.3) и конвекцию, можно характеризовать плотностью теплового потока д, которая сильно зависит от абсолютной температуры нагретого тела  [c.173]

    Тепловое излучение полупрозрачных и селективно поглощающих сред. Уравнение переноса излучения. Теплообмен излучением в излучающей, поглощающей и рассеивающей средах. Полное внутреннее отражение ИК излучения, ИК световоды. Спектры излучения типовых объектов ТК (частотные и оптико-геометрические характеристики). ИК излучение фоновых излучателей, способы его филырации. Поляризация ИК излучения. Поляризационные ИК фильтры (типы, характеристики, области применения). [c.376]

    Наряйу с рассмотренными видами переноса энергии существует перенос энергии электромагнитными волнами. При этом предполагается, что поглощение лучистой энергии приводит к изменению теплового состояния тела, точно так же как и излучение определяется тепловым состоянием (температурой) тела. Если среда, разделяющая поверхности с различной температурой, прозрачна для теплового излучения, то радиационный и конвективный теплообмен происходят параллельно независимо один от другого. Результирующие потоки лучистой энергии определяются в зтом случае только геометрией системы, температурой и радиационными свойствами поверхностей тел. [c.180]

    Справочник состоит из семи глав общие сведения, теплопроводность, конвективный теплообмен, тепловое излучение, кипение и конденсация, теплообменные аппараты и теплопередача строительных конструкций. Каждая глава начинается с используемых в ней обозначений и определений технических терминов. Обозначения объясняются всякий раз, когда в приводимых формулах может появиться двусмысленность или путаница. В основу положена Международная Система единиц (СИ). Для краткости опущены выводы формул. Более подробный анализ их можно найти в учебниках, ссылки на которые приведены в конце каждой главы. Включенные в справочник формулы либо общеприняты, либо тщательно отобраны как надежные и приемлемые. Везде, где было возможно, выражения приведены, учитьгаа.ч очевидное преимущество такого представления, в безразмерной форме. Это не сделано только для случаев, когда приводимое выражение предназначено лишь для специального применения. [c.9]


Смотреть страницы где упоминается термин Тепловое излучение теплообмен: [c.270]    [c.295]    [c.43]    [c.135]    [c.277]    [c.432]   
Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.274 ]

Процессы и аппараты химической технологии Часть 1 (1995) -- [ c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Тепловое излучение Излучение



© 2024 chem21.info Реклама на сайте