Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат фотосинтезирующий

    В одном из предыдущих разделов, посвященных классификации организмов, использующих энергию света, уже сообщалось, что фотосинтетический аппарат у разных типов растений имеет разное строение. У фотосинтезирующих бактерий и сине-зеленых водорослей хроматофоры представляют собой индивидуальные тилакоиды или их скопления, не окруженные общей мембраной. [c.77]


    ОРГАНИЗАЦИЯ И ЛОКАЛИЗАЦИЯ ФОТОСИНТЕЗИРУЮЩЕГО АППАРАТА [c.191]

    Фотосинтезирующий аппарат у бактерий имеет несколько иной вид, чем у растений, приведем несколько примеров. [c.192]

    Суммируя сказанное, можно с достаточной уверенностью считать, что всегда, когда обнаруживалось, что скорость фотосинтеза продолжала возрастать при внешней концентрации двуокиси углерода значительно выше 10 10 Л1, причиной этого явления было медленное внешнее снабжение фотосинтезирующих клеток двуокисью углерода и вследствие этого истощение восстанавливаемого субстрата. Опыты с сильно перемешиваемыми растворами или с быстро циркулирующими газовыми смесями всегда показывали, что фотосинтетический аппарат насыщается двуокисью углерода при концентрациях не выше, а иногда и ниже, чем 1 10 м. Даже в подобных опытах нельзя быть уверенным в том, что устранены все эффекты диффузии, особенно у высших растений, у которых диффузионное сопротивление в устьицах, эпидермисе и в межклетниках невозможно устранить размешиванием или циркуляцией газа. Диффузионное сопротивление клеточных стенок или протоплазменных слоев также остается вне влияния всех механических средств, хотя, вероятно, его можно изменить при помощи химических агентов. [c.325]

    Выбор в качестве экзогенных доноров электронов восстановленных соединений серы обусловил определенную привязанность возникших фототрофных эубактерий к местам обитания, где эти соединения имеются. Колоссальное преимущество форм, которые, сохранив положительные моменты сформированного фотосинтетического аппарата, могли бы в качестве экзогенного донора электронов использовать повсеместно распространенное вещество, очевидно. Таким веществом является вода. Поэтому следующий принципиально важный шаг на пути эволюции фотосинтеза и фотосинтезирующих организмов — способность использовать воду в качестве донора электронов. [c.287]

    Таким образом, обнаруженные у фотосинтезирующих эубактерий типы фотосинтеза различаются организацией фотосинтетического аппарата, природой экзогенных доноров электрона и выделяемыми окисленными продуктами. Общим для всех типов фотосинтеза является способность превращать энергию света в [c.296]

    Преимущественно по химическому механизму тушение 02 осуществляется насыщенными жирными кислотами, липидами, аминокислотами, нуклеотидами и другими соединениями. Механизмы химического тушения разнообразны, но в большинстве случаев начальной стадией является образование лабильной циклической перекиси с последующим ее разложением, которое приводит к возникновению свободных радикалов. Химическое тушение 02 может приводить в клетке к существенным деструктивным последствиям. К тушению в основном по физическому механизму способны молекулы разных химических соединений. Наиболее эффективны в этом отношении каротиноиды, широко распространенные в мире прокариот. Они обнаружены в клетках многих аэробных хемотрофов, являются обязательным компонентом пигментного аппарата всех фототрофов. В клетках фотосинтезирующих [c.338]


    Локализация фотосинтезирующего аппарата в клетках различных прокариот [c.192]

    Два компоненту фотосинтетического аппарата — реакционные центры и электронтранспортные системы — всегда локализованы в клеточных мембранах, представленных ЦПМ и у большинства фотосинтезирующих эубактерий развитой системой внутрицитоплазматических мембран — производных ЦПМ (см. рис. 4). Локализация светособирающих пигментов в разных группах фотосинтезирующих эубактерий различна (табл. 22). У пурпурных бактерий, гелиобактерий и прохлорофит светособирающие пигменты в виде комплексов с белками интегрированы в мембраны (рис. 72, А). В клетках зеленых бактерий и цианобактерий основная масса све-тособирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий (см. рис. 4). [c.274]

    Расскажите о локализации фотосинтезирующего аппарата у различных групп микроорганизмов. [c.206]

    Самым важным фотосинтетическим пигментом у всех растений является хлорофилл а (Хл а) в бактериях ему соответствует бактериохлорофилл (БХл). Кроме того, фотосинтезирующий аппарат всех клеток содержит ряд пигментов, обычно называемых дополнительными или вспомогательными. Нам теперь ясно, что функции этих компонентов не менее существенны, чем функция обычного хлорофилла а. У всех зеленых растений, включая водоросли, к такого рода пигментам относится также особая форма хлорофилла а (поглощающая в более коротковолновой области спектра) и хлорофилл Ъ. Ряд других вспомогательных пигментов указан в табл. 37. Среди них особенно важную роль играют каротиноиды и фикобилины (фикоцианин и фикоэритрин). На фиг. 93 показано строение некоторых фотосинтетических пигментов. [c.320]

    Необходимо иметь в виду, что параллельно с изменением фотосинтетической функции должна была изменяться и структура фотосинтетического аппарата. Действительно, современные организмы, отличающиеся по способу использования энергии света, имеют различную структуру фотосинтетического аппарата. До 1952 года считали, что у наиболее примитивных форм — фотосинтезирующих бактерий и сине-зеленых водорослей — хлорофилл диффузно рассеян в протоплазме, в то время как у остальных водорослей и высших растений он скон- [c.21]

    Известно 5 групп эубактерий, способных преобразовывать световую энергию в химическую с помощью хлорофилла. Фотосинтез, осуществляемый ими, делится на 2 типа не сопровождающийся выделением молекулярного кислорода (бескислородный фотосинтез) и сопровождающийся выделением О2 (кислородный фотосинтез). В соответствии с этим все фотосинтезирующие эубактерии в IX издании Определителя бактерий Берги предложено разделить на две таксономические группы в ранге классов Апоху-рЬо1оЬас1епа и ОхурЬо1оЬас1епа. Эубактерии, осуществляющие бескислородный фотосинтез, на основании таких признаков, как пигментный состав и тонкое строение фотосинтетического аппарата, делятся на 3 группы пурпурные, зеленые бактерии и гелиобактерии. Эубактерии, фотосинтез которых сопровождается выделением О2, включают 2 группы организмов цианобактерии и прохлорофиты. В основу деления положены те же признаки (см. табл. 21 — 23). Критерии, определяющие там, где это возможно, деление на таксоны более низкого ранга, даны при характеристике каждой из выделенных групп. [c.297]

    Число единиц фотосинтетического аппарата в клетках растений различных систематических групп может сильно колебаться. У фотосинтезирующих бактерий число тилакоидов в клетках может доходить до нескольких тысяч. У водоро слей часто обнаруживается всего один хроматофор (правда, вмещающий большое количество [c.77]

    Структура и функция фотосинтезирующего аппарата. М., ИЛ, 1962. [c.350]

    Одной из обширнейших групп фотосинтезирующих микроорганизмов являются цианобактерии, особенности фотосинтетического аппарата которых были отмечены выше. Затруднения в переходе к их бактериологической систематике объясняются во многом сложностями получения чистых культур этих микроорганизмов. Поэтому в настоящее время классификация традиционно базируется на ботанических принципах. [c.194]

    Фотосинтезирующий аппарат зеленых и пурпурных бактерий, таким образо м, существенно отличается по своей структуре от мезосом гетеротрофных бактерий и напоминает хроматофоры синезеленых водорослей. В эволюционном отнощении он, по-видимому, является прообразом хло-ропластов высщих растений. [c.34]

    Еще один важный эксперимент (поставленный Эмерсоном и Арнольдом [79е]) был основан на использовании очень коротких вспышек света. При измерении квантового выхода фотосинтеза обнаружился поразительный факт за один цикл работы фотосинтезирующего аппарата листьев на каждые 3000 молекул хлорофилла высвобождалась лишь одна молекула Ог. Вместе с тем подсчеты показывали, что на каждую высвободившуюся молекулу Ог поглощалось лишь около вось- [c.38]

    Ф-ции Ф. в. в растениях разнообразны и не до конца изучены. Они защищают фотосинтезирующий аппарат клетки растений от повреждающего воздействия коротковолнового УФ излучения, обладают антимутагенной активностью и играют роль индукторов (сигнальных в-в) во взаимоотношениях растений с микроорганизмами. В ряде случаев Ф. служат защитными агентами при поражении растений патогенами. [c.106]


    Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетич. аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (т. наз. тилакои-дах), тогда как темповая стадия происходит в жвдком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях - в т. наз. хроматофорах. [c.176]

    Среди внутрицитоплазматических мембран вьщеляют несколько видов (табл. 4). Развитая система внутрицитоплазматических мембран характерна для большинства фотосинтезирующих эубактерий. Поскольку было показано, что в этих мембранах локализован фотосинтетический аппарат клетки, они получили общее название фотосинтетических мембран. Все фотосинтетические мембраны (как и все внутриклеточные) — производные ЦПМ, возникшие в результате ее разрастания и глубокого впячивания (инвагинации) в цитоплазму. У некоторых организмов (пурпурные бактерии) фотосинтетические мембраны сохранили тесную связь с ЦПМ, легко обнаруживаемую при электронно-микроскопическом изучении ультратонких срезов клетки. У цианобактерий эта связь менее очевидна. Одни авторы считают, что связь фотосинтетических мембран с ЦПМ у цианобактерий всегда существует, но трудно выявляется, поскольку редко попадает в плоскость среза препарата. По другому мнению, фотосинтетические мембраны цианобактерий — структуры, возникшие первоначально из ЦПМ, но впоследствии отделившиеся от нее и являющиеся в настоящее время автономными клеточными компонентами. [c.52]

    Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетически-ми органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, некоторые особенности метаболизма, последовательность оснований 165 рРНК). Для ответа на вопрос, в каком отношении прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеины, или, наоборот, цианобактерии возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп эубактерий с фотосинтезом [c.323]

    У этих бактерий весь фотосинтезирующий аппарат собран в виде хлоросомы. [c.192]

    Светочувствительные пигменты входят в состав фотосинтети-ческого аппарата высших растений, водорослей и фотосинтезирующих бактерий. В эукариотических клетках пигменты находятся в окрашенных пластидах — хлоропластах, у сине-зеленых водорослей — в тилакоидных структурах, у фотосинтезирующих бактерий — в специализированных органеллах мезосомах. Кроме того, эти пигменты встречаются в других структурах, не имеющих отношения к фотосинтезу, например в хромопластах и их предшественниках (этиопластах). [c.267]

    Для анализа можно использовать только свежий, неувядший растительный материал, так как хранение сырья вызывает денатурацию пигментов. Если сырье нельзя обрабатывать непосредственно после сбора, его рекомендуется хранить в полиэтиленовых пакетах на холоду (ниже О С) в течение 1—2 сут или быстро заморозить смесью сухого льда в ацетоне, жидким воздухом или азотом. Листья или другое растительное сырье измельчают вручную в ступке с абразивом (кварцевый песок или порошок карборунда в количестве /з объема растираемого материала), а затем экстрагируют растворителем (в количестве, которое достаточно для насыщения гомогената) на холоду. Гомогенизация в охлажденном смесителе Уоринга или в другом аппарате с верхним приводом мешалки, или же в мацераторе с двойной системой цилиндров-ножей требует большого количества растительного материала и растворителя (примерно 20-кратного от веса ткани). Одно- и многоклеточные морские водоросли и фотосинтезирующие бактерии отделяют на центрифуге, а затем обрабатывают в поршневом или вибрационном гомогенизаторе с мелкими стеклянными шариками..  [c.268]

    Большая часть работ по ЭПР фотосинтетических систем была выполнена на фотосинтезирующих бактериях. Эти организмы появились на раннем этапе эволюционного развития фотосинте-тического аппарата, так как они не умеют освобождать кислород из воды. Однако большинство их способно связывать СОг и в процессе фиксации СОг окисляет различные субстраты, в том числе ПгЗ или молекулярный водород. [c.414]

    Изложенные выше представления явились результатом длительного и многостороннего изучения фотосинтетического аппарата различных организмов, которое еще далеко не завершено. Успехам исследований механизмов фотосинтеза способствовал ряд комплексно используемых методических приемов. Среди них разработка выделения изолированных хлоропластов позволила активно воздействовать на фотосинтетический аппарат различными веществами природного и неприродного происхождения, ингибиторами, разобщителями, кофакторами, мечеными соединениями и др. Использование мутантов водорослей и бактерий, содержащих измененное количество переносчиков и компонентов, дало возможность оценить их место и значение в электронотранспортной цепи. Этим же целям служило изучение редокс-потенциалов, ЭПР-спектров модельных и нативных систем, изменения электронных спектров при окислении и восстановлении переносчиков и т. д. Так, фотоиндуцированные изменения в суспензиях интактных клеток фотосинтезирующих организмов в области 420—430 и 550—560 нм обусловлены окислительно-восстановительными превращениями цитохромов, в области 597 нм — нластоцианина, в области 263 нм — пластохинона. [c.29]

    Все функции желтых пигментов окончательно еще не установлены, но не вызывает сомнения то, что, во-первых, они могут передавать энергию поглощенных квантов хлорофиллу, расширяя спектр действия фотооинтетиче-ского аппарата во-вторых, каротиноиды защищают хлорофилл от фоторазрушения. Было показано, что у лишенных каротиноидов мутантов фотосинтезирующих бактерий фоторедукция может осуществляться, но наблюдается быстрое разрушение (фотоокисление) хлорофилла. [c.42]

    Избирательная токсичность на основе цитологических различий обусловлена различным строением животных и растительных клеток. Так, у растений имеются клеточные стенкк и фотосинтезирующий аппарат, который отсутствует у животных. В то же время у животных и насекомых имеется нервная система, которой нет у растений. [c.94]

    Как отмечает А.Т. Мокроносов (1988), на протяжении столетий до последнего времени практическая селекция обеспечивала выведение все более продуктивных сортов растений, основываясь на экстенсивном типе продукционного процесса. Иными словами, создавались сорта, позволяющие разместить все большее количество фотосинтезирующих единиц (хлоропластов, площади листьев) в единице объема и площади посева при максимально возможной продолжительности активного фотосинтеза. Эти сорта отличались способностью формировать в фитоценозе высокий ассимиляционный потенциал (м сут), но их фотосинтетический аппарат, его активность почти не затрагивались и сохранялись на уровне близком к фотосинтезу исходных форм. [c.368]

    Мембранный аппарат бактерий представлен цитоплазматической и внутрицитоплазматическими мембранами, образующими единую, морфологически связанную систему. Цитоплазматическая мембрана у бактерий защищена с наружной стороны клеточной стенкой, как у синезеленых водорослей и грибов (Пешков, 1966 Drews et al., 1966 Мейсель и др., 1967, 1968 Бирюзова, 1973), и соединена с нею перемычками. Изучение структурной связи цитоплазматической мембраны с клеточной стенкой представляет интерес для понимания своеобразия структуры этих организмов по сравнению с теми эукариотами, у которых клеточная стенка отсутствует. Система внутрицитоплазматических мембран у различных бактерий может быть образована сложно устроенными органоидами, имеющими структуру мезосом (большинство грамположитель-ных бактерий) или образованных тилакоидами (фотосинтезирующие бактерии). Она может иметь вид кольцевидных мембранных структур простого строения (большинство грамотрицательных бактерий), а также сети мембран, беспорядочно пронизывающих цитоплазму (некоторые анаэробные бактерии). [c.25]


Смотреть страницы где упоминается термин Аппарат фотосинтезирующий: [c.263]    [c.372]    [c.397]    [c.57]    [c.355]    [c.355]    [c.184]    [c.514]    [c.72]    [c.78]    [c.164]    [c.19]    [c.327]    [c.439]    [c.194]   
Теоретические основы биотехнологии (2003) -- [ c.184 , c.185 , c.186 , c.187 , c.188 , c.189 , c.190 , c.191 , c.192 ]




ПОИСК







© 2025 chem21.info Реклама на сайте