Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны фотосинтетические

    Фотосинтетические мембраны сходны по строению и химическому составу с плазматической мембраной (табл. 2.1), но, кроме того, содержат пигменты, поглощающие свет (бактериохлорофиллы и каротиноиды), а также компоненты фотосинтетической электрон-транспортной цепи (цитохромы, убихинон) и фосфорилирующей системы. [c.49]

    Прокариотические сине-зеленые водоросли (цианобактерии) являются простейшими фотосинтезирующими организмами, выделяющими кислород. Они не содержат хлоропластов, но имеют более или менее развитые внутренние фотосинтетические мембраны, включающие хлорофилл а, каротиноиды и фикобилины. Опишите все изменения в морфологии, ультраструктуре и составе пигментов, которые можно ожидать при переносе цианобактерий из 1) условий низкой освещенности в условия высокой освещенности и высокого содержания кислорода, 2) условий высокой освещенности в условия низкой освещенности, 3) условий освещения белым светом в условия освещения зеленым или красным светом. [c.402]


    ТОННОГО градиента. Интактные клетки реагируют на воздействие света выделением в среду протонов, приводящим к закислению среды. В суспензии пузырьков из фотосинтетических мембран (хроматофоров) свет вызывает перенос протонов, направленный внутрь. Таким образом, мембраны хроматофоров и тилакоидов имеют такую же полярность, как и субмитохондриальные пузырьки. Это будет поняты , если учесть, что все эти мембраны образуются путем впячивания внутрь и разрастания плазматической мембраны или же внутренней мембраны хлоропласта. Хотя точная локализация отдельных компонентов в мембране еще не установлена, можно думать, что переносчики водорода и электронов расположены и в мембране анаэробных фототрофных бактерий таким образом, что происходит разделение зарядов. В хроматофорах электроны транспортируются наружу, а протоны-внутрь. Создающийся протонный потенциал и служит движущей силой фотосинтетического фосфорилирования. [c.392]

    Хлоропласты представляют интерес в первую очередь в связи с их фотосинтетической функцией. Однако с более общей точки зрения фотосинтез — это лишь одна из многих важных биологических функций хлоропластов. Недавно было показано, что хлоропласты способны синтезировать белок, что опи изменяют свою форму и подвергаются конформационным изменениям в процессе переноса электронов [25] и что мембрана хлоропластов способна к накоплению ионов [30]. Генетическая автономность хлоропластов, связанная с наличием в них нуклеиновых кислот, способы самовоспроизведения хлоропластов и их метаболические функции, отличные от фотосинтеза, — вот интереснейшие вопросы, ждущие своего разрешения. Здесь будут рассмотрены некоторые из этих проблем. [c.81]

    Поскольку — химические частицы, несущие положительный заряд, неравномерное их накопление по обе стороны мембраны приводит к возникновению не только химического (концентрационного) градиента этих частиц, но и ориентированного поперек мембраны электрического поля (суммарный положительный заряд, где происходит накопление Н , и отрицательный заряд по другую сторону мембраны). Таким образом, при переносе электронов на ЦПМ возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом АЦн+ и измеряемый в вольтах (В, мВ), который состоит из электрического (трансмембранная разность электрических потенциалов A jr) и химического (концентрационного) компонентов (фадиент концентраций — АрН). Измерения показали, что на сопрягающих мембранах прокариот при работе дыхательных и фотосинтетических электронтранспортных цепей Арн+ достигает 200—250 мВ, при этом вклад каждого компонента непостоянен. Он зависит от физиологических особенностей организма и условий его культивирования. [c.101]


    Применение удобрений , которые выделяли бы углекислоту, непрактично, так как для этого нужны слишком большие их количества. Однако более тонкие приемы могут дать хорошие результаты. Степень ассимиляции углекислоты в фотосинтетическом цикле лимитируется скоростью ее поступления через устьица листьев и прохождения через различные мембраны, растворимостью в различных жидких средах и концентрацией око- [c.243]

    Два компоненту фотосинтетического аппарата — реакционные центры и электронтранспортные системы — всегда локализованы в клеточных мембранах, представленных ЦПМ и у большинства фотосинтезирующих эубактерий развитой системой внутрицитоплазматических мембран — производных ЦПМ (см. рис. 4). Локализация светособирающих пигментов в разных группах фотосинтезирующих эубактерий различна (табл. 22). У пурпурных бактерий, гелиобактерий и прохлорофит светособирающие пигменты в виде комплексов с белками интегрированы в мембраны (рис. 72, А). В клетках зеленых бактерий и цианобактерий основная масса све-тособирающих пигментов находится в особых структурах, прикрепленных к поверхности мембраны, но не являющихся ее компонентом. Это хлоросомы зеленых бактерий и фикобилисомы цианобактерий (см. рис. 4). [c.274]

    Фосфорилирование в дыхательной цепи. Регенерация АТР при фосфо-рилировании в дыхательной цепи и фотосинтетическом фосфорилирова-нии протекает в мембранах. АТР-синтаза, так же как и компоненты дыхательной цепи, является составной частью мембраны. Каким образом происходящий в дыхательной цепи перенос водорода и эдйстронов сопряжен с синтезом АТР, до конца еще не выяснено. Однако многочисленные эксперименты показали, что регенерация АТР происходит только в пространствах, окруженных со всех сторон мембранами,-в пузырьках, или везикулах. Процессы переноса водорода и электронов теснейшим образом сопряжены с перемещением протонов, а этот процесс в свою очередь необходим для регенерации АТР. [c.243]

    Сама фотосинтетическая мембрана, из которой образованы тилакоиды, состоит из бимолекулярного липидного слоя, частично или полностью пронизывающего белковые макромолекулы. Липиды находятся Б аморфном, а не в кристаллическом состоянии, как считалось ранее. [c.14]

    Как отмечено выше, центральную роль в осуществлении фотосинтеза играет трансформация энергии света в разность потенциалов мембраны фотосинтетического центра и сопряженный с этим синтез АТФ. Недавно, используя методы спектроскопии, рентгеноструктурного анализа и молекулярной генетики, удалось получить детальную картину событий, происходящих при фотосинтезе и выявить пространственное расположение и роль белков и пигментов, участвующих в этом процессе. За эту работу немецкие ученые Р. Хубер, И. Дайзенхофер и X. Михель удостоены Нобелевской премии 1988 г. [c.361]

    Обобщенная структура хлоропласта высших растений показана на рис. 10.3,Л. Клетки листьев растений могут содержать несколько сотен таких хлоропластов — эллиптической или линзообразной формы — длиной около 3—10 мкм. Хлоропласт состоит из двойной наружной мембраны (или оболочки), заключающей в себе матрикс — строму, которая содержит внутренние фотосинтетические мебраны. [c.329]

    Зеленые ткани растений своей окраской обязаны фотосинтетическому пигменту хлорофиллу, который в высоких концентрациях содержится в хлоропла-стах. Поглощение света хлорофиллом запускает в хлоропластах процессы переноса электронов, которые сопряжены с переносом протонов через мембраны тилакоидов и, как следствие, с запасанием энергии в биологически полезной форме (в виде молекул АТР) и восстановительных эквивалентов (в виде NADPH). Полученные таким путем АТР и ШОРН в свою очередь используются хлоропластами для превращения СО2 в сахара (см. гл. 9). При этом синтетическая активность хлоропластов такова, что позволяет фотосинтезирующим тканям экспортировать большие количества органических веществ во все остальные части растения. Эти вещества в основном представлены дисахаридом сахарозой, поэтому жидкость, заполняющая ситовидные трубки (флоэмный сок) содержит обычно от 10 до 25% сахарозы [c.178]

    Сине-зеленые водоросли ( yanophyta или yanoba teria) представляют собой единственную большую группу прокариот, которые способны к фотосинтезу с выделением кислорода, сходному с фотосинтезом у высших растений. Однако тилакоидные мембраны у них находятся не в хлоропластах, а распределены по всей цитоплазме клетки, преимущественно на ее периферии. Фотосинтетические пигменты сине-зеленых водо- [c.353]

    Формирование активных фотосистем. Рост тилакоидной мембраны и развитие функционирующего фотосинтетического аппарата в ходе дифференциации этиопласта в хлоропласт — многоступенчатый процесс, который включает не только биосинтез структурных и функциональных компонентов, но также и интеграцию и сборку этих компонентов в функциональные единицы. На разных стадиях развития мембран можно выделить тилакоиды, содержащие ФС I- и ФС П-единицы. Сначала формируются ядра ФС I и ФС II, включающие реакционные центры, а затем простые (мономерные ) формы ССК. Дифференциация первичных тилакоидов в тилакоиды стромы и гран происходит по мере синтеза ССК в ходе такой дифференциации размер ФС I- и ФС П-единиц увеличивается, а в процессе дальнейшего развития пигмент-белковые комплексы постепенно организуются в большие надмолекулярные структуры полностью развитых хлоропластов. [c.359]


    По-видимому, должен существовать общий механизм, который регулирует образование хлоропласта в целом. Как осуществляются при этом тонкие взаимодействия компонентов и их контроль, не известно, однако были обнаружены тесные генетические взаимосвязи между ними. Должны синтезироваться все компоненты, и все они должны быть доступны для включения в тилакоидные мембраны. В противном случае синтетические процессы подавляются. Например, действие некоторых гербицидов заключается в подавлении биосинтеза каротиноидов. Если этиолированные проростки или культуры водорослей Euglena, выращенные в темноте, обработать такими гербицидами, то нормальные каротиноиды хлоропластов не образуются и, следовательно, не включаются в фотосинтетические мембраны. В результате не синтезируются и другие компоненты хлоропластов, в том числе хлорофилл, и, следовательно, не происходит развития хлоропласта в целом. Даже если это было бы и не так, то подавление образования каротиноидов привело бы к тому, что весь синтезированный хлорофилл и зарождающиеся фотосинтетические мембраны оказались бы без защиты от фотоокисления (разд. 10.4.2) и разрушались бы. Поэтому гербициды, подавляющие биосинтез каротиноидов в растениях, очень эффективны. [c.363]

    Главным фактором, регулирующим развитие фотосинтетических мембран и синтез пигментов, по-видимому, является парциальное давление кислорода. Если оно выше определенного уровня, дыхание может происходить с достаточной эффективностью, но образования фотосинтетических мембран или синтеза пигментов при этом не наблюдается. Низкое парциальное давление кислорода стимулирует образование фотосинтетического аппарата и пигментов, в первую очередь реакционных центров и главного комплекса светособирающей антенны Р-875. В ответ на изменение интенсивности освещения изменяется и состав пигментов. Так, у Rhodopseudomonas spp., свет низкой интенсивности стимулирует синтез бактериохлорофилла и каротиноидов, поскольку происходит формирование вторичного комплекса светособирающей антенны Р-800-850. Свет высокой интенсивности подавляет формирование этого комплекса, и в результате содержание пигментов снижается. В случае Rhodospirillum rubrum, которая не содержит антенны Р-800-850, содержание пигмента главной светособирающей антенны Р-875 регулируется интенсивностью освещения. О том, как протекают и регулируются процессы, в ходе которых фотосинтетические пигменты образуются и включаются в мембраны, известно немного. Гены, контролирующие синтез хлорофилла и каротиноидов, а также, возможно, развитие активного фотосинтетического аппарата в целом, локализованы в хромосоме (но не в плазмиде) и расположены очень близко друг к другу. В кодировании фотосинтетического аппарата может участвовать одна большая генетическая единица. [c.364]

    СЯ ОСНОВНОЙ областью исследования пигментов. В настоящее время много внимания уделяется механизму и регуляции синтеза пигментов, включению их в фотосинтетические мембраны, ориентации молекул пигментов в фотосинтетическом аппарате и молекулярным превращениям, которые происходят в течение очень кратковременных первичных фотореакций. Более подробная информация о механизмах фотосинтеза позволит создать простые модельные системы, которые могут быть использова- [c.366]

    Среди внутрицитоплазматических мембран вьщеляют несколько видов (табл. 4). Развитая система внутрицитоплазматических мембран характерна для большинства фотосинтезирующих эубактерий. Поскольку было показано, что в этих мембранах локализован фотосинтетический аппарат клетки, они получили общее название фотосинтетических мембран. Все фотосинтетические мембраны (как и все внутриклеточные) — производные ЦПМ, возникшие в результате ее разрастания и глубокого впячивания (инвагинации) в цитоплазму. У некоторых организмов (пурпурные бактерии) фотосинтетические мембраны сохранили тесную связь с ЦПМ, легко обнаруживаемую при электронно-микроскопическом изучении ультратонких срезов клетки. У цианобактерий эта связь менее очевидна. Одни авторы считают, что связь фотосинтетических мембран с ЦПМ у цианобактерий всегда существует, но трудно выявляется, поскольку редко попадает в плоскость среза препарата. По другому мнению, фотосинтетические мембраны цианобактерий — структуры, возникшие первоначально из ЦПМ, но впоследствии отделившиеся от нее и являющиеся в настоящее время автономными клеточными компонентами. [c.52]

    Локализация пигментов. Фотосинтетические пигменты у пурпурных бактерий связаны с внутренними мембранами-везикулярными или трубчатыми выростами плазматической мембраны, которые сохраняют с ней связь, но проникают в толщу цитоплазмы. У разных видов бактерий такие мембраны имеют разную форму. Это могут быть трубочки, везикулы (пузырьки) или скопления ламелл (располагающихся концентрически или же в виде стопок) иногда они заполняют всю внутренность клетки (см. рис. 2.23). Фрагменты мембран, освобождаемые при разрушении клеток в виде везикул и отделяемые центрифугированием, называют хроматофорами . В клетках зеленых бактерий пигменты связаны с различными структурами светособирающие пигменты-главным образом с хлоросомами, а пигменты реакционных центров-с плазматической мембраной (см, рис. 2.4 и 12.9). [c.378]

    Внутрицитоплазматические мембраны фотосинтезирующих эубактерий могут иметь вид трубочек, пузырьков (везикул, хро-матофоров) или уплощенных замкнутых дисков (тилакоидов), образованных двумя тесно сближенными мембранными пластинами (ламеллами) (см. рис. 4). Система фотосинтетических мембран очень пластична. Ее морфология и степень развития в клетке определяются многими факторами внещней среды (интенсивностью света, концентрацией кислорода, снабжением клетки питательными веществами), а также возрастными характеристиками культуры. [c.53]

    Клетки цианобактерий, за исключением принадлежащих к роду Gloeoba ter, характеризуются развитой системой внутрицитоплазматических мембран (тилакоидов), в которых локализованы компоненты фотосинтетического аппарата. Единственная энергопреобразующая мембрана Gloeoba ter — цитоплазматическая, где локализованы процессы фотосинтеза и дыхания. [c.314]

    Фотосинтетические механизмы хлоропластов переводят солнечную энергию в химическую энергию АТР и NADPH в высшей степени эффективно. Поэтому ведется много исследований с целью научиться воспроизводить эти процессы в более простых искусственных молекулярных системах и таким образом заставить работать на себя непрерьшно льющийся на Землю неиссякаемый поток солнечной энергии. В современных солнечных батареях в качестве рецепторов световой энергии используются дорогостоящие твердые материалы, например кристаллический силикон, и эти батареи работают далеко не столь эффективно, как хлоропласты растений. Если бы нам удалось на молекулярном и субатомном уровне понять до конца те принципы, на основе которых хлорофилл и бактериородопсин работают как высокоэффективные ловушки световой энергии, и одновременно выяснить, как происходит распределение по обе стороны мембраны электрических зарядов и [c.713]

    Эндосимбиотическая гипотеза. Клеточные органеллы эукариот имеют много фундаментальных общих черт с прокариотическими клетками. Они содержат кольцевые молекулы ДНК, их рибосомы относятся к типу 70S, а мембраны содержат компоненты электрон-транспортной цепи (флавины, хиноны, Fe-S-содержащие белки, цитохромы) и выполняют функцию дыхательного или фотосинтетического преобразования энергии. Согласно симбиотической гипотезе, митохондрии происходят от бесцветных аэробных бактерий, а хлоропласты-от цианобактерий, сделавшихся эндосимбионтами каких-то примитивных эукариотических клеток. В дальнейшем должна была произойти очень большая специализация функция регенерации АТР была передана клеточным органел-лам. Наружная мембрана эукариотической клетки не содержит компонентов электрон-транспортной цепи, С другой стороны, клеточные органеллы тоже не самостоятельны они, правда, обладают собственными молекулами ДНК, однако значительная часть информации, необходимой для синтеза их белков, находится в клеточном ядре. Примером может служить рибулозобисфосфат-карбоксилаза-ключевоп фермент ав-тотрофной фиксации Oj у зеленых растений. Она состоит из 8 боль- [c.26]

Рис. 2.24. ЕсшЫогкоЛозрога тоЫНз со стопками фотосинтетических ламелл. Электронная микрофотография ультратонкого среза (150 000 х ). ЯМ-плазма-тическая мембрана Р рибосомы СЛ-стопка ламелл /-наружный слой клеточной стенки 2-внутренний слой клеточной стенки 3 и 4-наружный и внутренний электронопрозрачные промежуточные слои. Рис. 2.24. ЕсшЫогкоЛозрога тоЫНз со стопками фотосинтетических ламелл. <a href="/info/73091">Электронная микрофотография</a> <a href="/info/104602">ультратонкого среза</a> (150 000 х ). ЯМ-плазма-тическая мембрана Р рибосомы СЛ-стопка ламелл /-<a href="/info/403513">наружный слой</a> <a href="/info/98958">клеточной стенки</a> 2-<a href="/info/279516">внутренний слой</a> <a href="/info/98958">клеточной стенки</a> 3 и 4-наружный и внутренний электронопрозрачные промежуточные слои.
    Общим для всех представителей Rhodospirillales является то, что их фотосинтетический аппарат (светособирающие системы и реакционные центры) находится на внутренних мембранах (тилакоидах), образующихся из впячиваний плазматической мембраны (см. рис. 2.23 и 2.24). [c.367]

    На ультратонких срезах хлоропластов (фото 13 — 16) ламеллы выглядят гладкими. Однако при изучении препаратов ламелл изолированных хлоропластов, полученных методом напыления, обнаруживается повторяющаяся регулярная структура внутренней поверхности мембраны. Эту структуру впервые наблюдал Стейнман [33]. Исследования, проведенные в Калифорнийском университете [26], позволили предположить, что эти регулярные структуры представляют собой, по-видимому, морфологическое выражение физиологической фотосинтетической единицы, предложенной Эмерсоном и Арнольдом [10, И]. Эти единицы получили название квантосом. [c.79]

    Таким образом, можно сделать вывод, что активация хлоропластов в процессе старения связана с потерей способности фотосинтетической мембраны хлоропластов к образованию протонного градиента и, следовательно, фосфорилирующей активности. Следует заметить, что, поскольку Тдрн==Т1= l/( i-f i< ) имеют близкие (в пределах ощибки эксперимента) значения, можно сделать вывод о том, что константа существенно превышает константу 1 , в силу чего необратимая инактивация хлоропластов проходит через состояние электронотранспортной цепи Хг и связана в первую очередь с процессом, характеризуемым константой k2 . Этот процесс и приводит к полной потере хлоропластами их активности по отношению к реакциям электронного транспорта. [c.135]

    Итак, в результате исследования кинетики и механизма инактивации электронотранспортной цепи хлоропластов в процессе старения показано, что процесс трансформации исходного состояния электронотранспортн0й цепи Xi в промежуточное Хг связан с инактивацией способности фотосинтетической мембраны к [c.137]

    На рис. 4.7 показана тилакондная мембрана с большими гранулами (17,5 нм) на внешней поверхности и малыми гранулами (11 нм) на внутренней поверхности. Эти гранулы относятся соответственно ко второй и первой фотосинтетической системе. Наиболее неясным представляется механизм окислительно-восстановительного цикла и его связь со структурными элементами. [c.121]

    Фотобатареи жидкостного типа представляются перспективными в качестве аккумуляторов энергии. В таких батареях разделение зарядов осуществляется (аналогично тилакоидным мембранам фотосинтетических систем) путем катодного восстановления и анодного окисления. Двухслойные молекулярные мембраны (типа показанных на рис. 4.14) обладают малой прочностью, но их характеристики можно улучшить, используя в качестве подложек микропористые пленки. Очень важным является создание полимерных пленок, способных осуществлять разделение электрических зарядов в фотосинтетических системах. Такие пленки позволили бы регулировать обратные реакщ1и в процессах, описанных в разд. 4, и перейти к почти полному моделированию фотосинтеза. [c.145]


Смотреть страницы где упоминается термин Мембраны фотосинтетические: [c.195]    [c.149]    [c.149]    [c.232]    [c.557]    [c.355]    [c.364]    [c.379]    [c.135]    [c.26]    [c.48]    [c.129]    [c.130]    [c.375]    [c.389]    [c.390]    [c.79]    [c.194]    [c.21]   
Микробиология Издание 4 (2003) -- [ c.52 ]




ПОИСК







© 2025 chem21.info Реклама на сайте