Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая донорно-акцепторный механизм

    Приведите формулы, выражающие электронную конфигурацию атома углерода 1) в возбужденном состоянии, 2) в основном состоянии, 3) карбокатиона (С+), 4) карбаниона (С ). Объясните, почему углерод не образует химические связи по донорно-акцепторному механизму. Каковы значения углов между осями орбиталей в карбокатионе и карбанионе  [c.6]


    Образование химических связей по донорно-акцепторному механизму характерно для комплексных соединений, изучение которых выходит за рамки программы средней школы, [c.81]

    Типы химической связи. Ковалентная связь, ее образование. Донорно-акцепторный механизм образования ковалентной связи. Электронные формулы молекул. [c.41]

    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    Образование химических связей по донорно-акцепторному механизму наиболее распространено в комплексных соединениях, к числу которых относятся и широко используемые в химии вяжущих веществ кристаллогидраты. [c.21]

    Приведенное определение необходимо дополнить в случае образования химической связи по донорно-акцепторному механизму каждая электронная пара донора отождествляется с одним неспаренным электроном. [c.43]

    Образование химических связей по донорно-акцепторному механизму — весьма распространенное явление при химических реакциях. Рассмотрим еще пример образования такой связи при взаимодействии молекулы ВНз с гидрид-ионом Н". В молекуле ВНз имеется вакантная р-орбиталь, а у гидрид-иона — неподеленная пара электронов, поэтому молекула ВНз служит акцептором, а ион Н" — донором. Схему образования химической связи по донорно-акцепторному механизму при взаимодействии молекулы ВНз с ионом Н можно записать в виде [c.47]

    При рассмотрении механизма образования химической связи указывалось, что связь образуется путем перекрывания или взаимного проникновения атомных орбиталей, содержащих неспаренные электроны. По донорно-акцепторному механизму ( перекрываются полностью заполненная и пустая орбитали. Перекрывание орбиталей происходит таким образом, чтобы обеспечивалось максимальное их взаимное проникновение. При этом условии образующаяся химическая связь будет наиболее прочной. [c.81]


    Уже на расстоянии одного или нескольких нанометров ( 10 м) между соседними молекулами возникают заметные силы притяжения (межмолекулярное взаимодействие). При межмолекулярном взаимодействии электронные облака не перекрываются и химические связи не образуются. При достаточном сближении некоторых молекул может происходить перекрывание электронных облаков и образование новых молекул. Возникающие при этом химические связи могут иметь различную прочность. Относительно малую прочность имеют водородные связи. Взаимодействие молекул может протекать по донорно-акцепторному механизму, при этом возникают прочные ковалентные связи. [c.65]

    Множество неорганических химических соединений отличается весьма сложным строением. В этих соединениях помимо обычных ковалентных или ионных связей между атомами или частицами действуют ковалентные химические связи, образованные по донорно-акцепторному механизму. Такие сложные соединения называются комплексными соединениями. [c.244]

    Донорно-акцепторный механизм образования ковалентной связи заключается в том, что один из атомов, участвующих в образовании. химической св.язи, предоставляет неподеленную электронную пару (его называют донором), а второй (акцептор)-свободн>ю орбиталь. Примером может служить образование иона аммония NH4" из молекулы аммиака NH-, и иона водорода Н"  [c.20]

    Что вы знаете об образовании ковалентной связи по донорно-акцепторному механизму Приведите примеры соединений, в которых имеется химическая связь, образованная по донорно-акцепторному механизму. [c.379]

    Рассмотрим образование химической связи по донорно-акцепторному механизму при взаимодействии молекулы аммиака с ионом водорода. Атом азота имеет на внешнем энергетическом уровне два спаренных и три неспаренных электрона  [c.46]

    Насыщаемость ковалентной связи. Среди многих свойств ковалентной связи наиболее важны насыщаемость, поляризация и направленность. Насыщаемость химической связи — это то, что отличает ее от всех других видов взаимодействия частиц. Собственно, вся изложенная квантовохимическая теория ковалентной связи — основные положения МВС, обменный и донорно-акцепторный механизмы ее образования — служит обоснованием насыщаемости химической связи. [c.98]

    К наиболее характерным химическим свойствам аммиака относится его способность вступать в реакции присоединения. Это связано с упомянутой выше возможностью образования атомом азота четвертой ковалентной связи по донорно-акцепторному механизму. Так, при взаимодействии молекулы аммиака с ионом водорода образуется ион аммония  [c.169]

    Для расчета химических связей в комплексах и объяснения их свойств используют различные модели метод валентных связей теорию кристаллического поля и метод молекулярных орбиталей Метод валентных связей (ВС). Согласно этому методу (см гл. II), при образовании комплексов между комплексообразова телем и лигандами возникает ковалентная связь по донорно акцепторному механизму. Комплексообразователи имеют ва кантные орбитали, т. е. играют роль акцепторов. Как правило в образовании связей участвуют различные вакантные орбитали комплексообразователя, поэтому происходит их гибридизация (см. И.З). Лиганды имеют неподеленные пары электронов и играют роль доноров в донорно-акцепторном механизме образования ковалентной связи. Например, ион имеет электронную конфигурацию 3 " 45Чр  [c.293]

    С явлением сольватации связывают химические процессы перестройки внешних электронных оболочек молекул и ионов вплоть до образования связей по донорно-акцепторному механизму. При этом решающая роль во взаимодействии приписывается или растворенному веществу, или растворителю, или отдельным частицам того или другого, или некоторым атомным группам многоатомных молекул или ионов. [c.80]

    Молекула Н, содержит одинарную (однократную) химическую связь Н—Н, образовавшуюся при прямом (максимальном выгодном) перекрывании орбиталей. Такое перекрывание называют с-связыва-пием, а саму связь — ст-связью. Между атомами других элементов возможно образование кратных связей — двойных и тройных (показан донорно-акцепторный механизм их образования)  [c.158]

    Химическая связь М—СО в карбонилах металлов включает а-и л-связи, а-Связь образуется по донорно-акцепторному механизму за счет свободных орбиталей атома -элемента и электронных пар углерэда молекул СО. я-Связь возникает по дативному механизму за сч т свободных л Р-орбиталей СО и -электронных пар атома -элеиента. Так, Мп (0) за счет пяти свободных 3 454 5 -орбиталей [c.571]

    В которых химическая связь между ВР и Р или ЫНз образуется по донорно-акцепторному механизму. Свойство галогенидов бора быть акцепторами электронов обусловливает их широкое применение как катализаторов в реакциях синтеза органических соединений. [c.265]

    Валентность определяется только числом ковалентных химических связей, в том числе возникших и по донорно-акцепторному механизму. Нельзя говорить о валентности атомов в соединениях, в которых отсутствуют ковалентные связи, надо говорить о степени окисления. В неорганической химии валентность атомов во многих случаях теряет определенность ее величина зависит от знания химического строения соединения (см. примеры на с. 59, 60), во многих случаях она может быть больше номера группы. [c.60]


    Наряду с обычными а-связями между атомами 8 и О возникают еще и нелокализованные л-связи, которые образуются по донорно-акцепторному механизму за счет свободных З -орби-талей атомов кремния и неподеленных 2р-электронных пар атомов кислорода. Подобная структура полимерного диоксида 8 02 обусловливает ряд свойств кварца, резко отличных от свойств диоксида углерода СОг. Кварц обладает большой твердостью, высокой температурой плавления (1728 С) и кипения (2950 °С), а также химической стойкостью по отношению ко многим реагентам. [c.274]

    Донорно-акцепторный механизм взаимодействия. Комплексные соединения в растворах электролитов. Координационный тип химической связи. Теория кристаллического поля. Влияние природы лигандов на расщепление энергетических уровней d-орбиталей центрального атома-комплексообразователя. [c.264]

    Донорно-акцепторный механизм образования атомных связей приводит к установлению между атомами наибольшего числа возможных химических связей. [c.51]

    В молекуле аммиака неспаренные образуют три. электронные пары с рода. У атома азота остается неподеленная пара электронов т. е. два электрона с антипаралелльными спинами на одной атомной орбитали. Атомная орбиталь иона водорода не содержит электронов (вакантная орбиталь). При сближении молекулы аммиака и иона водорода происходит взаимодействие неподелен-ной пары электронов атома азота и вакантной орбитали иона водорода. Неподеленная пара электронов становится общей для атомов азота и водорода, возникает химическая связь по донорно-акцепторному механизму. Атом азота молекулы аммиака является донором, а ион водорода — акцептором. Обозначив неподеленную пару электронов двумя точками, вакантную орбиталь квадратом, а связи черточками, можно представить образование иона аммония следующей схемой  [c.40]

    Многие молекулы сложных веществ, между атомами которых действуют ковалентные или ионные связи, способны участвовать в реакциях присоединения за счет образования дополнительных химических связей по донорно-акцепторному механизму. [c.106]

    Вследствие такого электронного строения атом азота в соединениях может образовать четыре химические связи три за счет неспаренных электронов 2/7-подуровня и одну по донорно-акцепторному механизму за счет электронной пары 2а , которую азот предоставляет в качестве донора. [c.84]

    Возникновение иона аммония связано с образованием химической связи по донорно-акцепторному механизму между атомом азота (донор) и ионом водорода (акцептор)  [c.85]

    Точечным пунктиром обозначены связи, возникшие по донорно-акцепторному механизму. Как следует из формулы, атом серы соединен восемью химическими связями, а значит, он восьмивалентен. Но степень окисления серы И5=-1-6. [c.110]

    Координационная теория не решила вопроса о природе сил комплексообразования. Это сделано на основе учения о строении атомов и молекул. Как известно, химическая связь между комплексообразователем (акцептором) и лигандами (донором) осуществляется по донорно-акцепторному механизму. [c.186]

    Гликолят меди — сложное (комплексное) соединение (стрелкой показано возникновение химических связей по донорно-акцепторному механизму). [c.314]

    Атом кислорода имеет 6 электронов на внешнем уровне. Из них 2 неспаренных. Поскольку кислород второй по ЭО после фтора, при образовании химических связей со всеми элементами, кроме Р, он будет оггягивать электронную плотность на себя. До завершения внешнего уровня не хватает 2 элекгронов. Значит, максимально кислород может принять 2 электрона. Возможные степени окисления атома О -1 (принят 1 электрон), 2 (принято 2 электрона) и О (в простом веществе). Образование ковалентной связи по донорно-акцепторному механизму в случае донора - кислорода - случай исключительный. Из-за отсутствия свободных орбиталей на внешне.м уровне спаренные электроны не могут быть разъединены. Следовательно, они не могут участвовать в образовании обменной ковалентной связи. Только два неспаренных р-электрона могут образовать [c.74]

    Механизмы образования химической связи. В методе валентных связей различают обменный и донорно-акцепторный механизмы образования химической связи. [c.98]

    Особенно характерно образование соединений между молекулами, одна из которых имеет низко лежащую свободную МО, а другая — 1есвязывающую орбиталь атомного типа, заполненную двумя электронами.. Перекрывание этих дв>т( МО приводит к образованию новых двух МО, общих для всей системы, и возникновению прочного химического соединения (рис. 53). Возникающая таким образом связь по своему происхождению называется донорно-акцепторной связью. Молекула с низколежащей свободной орбиталью называется акцептором электронов, а имеющая пару электронов на несвязывающей МО — донором. Примером донорно-акцепторного механизма образования химической связи в двухатомных молекулах может служить образование молекулярного иона НеН из атома Не и иона Н . Атом гелия имеет два электрона ка ] -орбитали с энергией —24,6 эВ (ПИ = = 24,6 эВ). Его рассматривают как типичный инертный атом с заполненной оболочкой. У иона имеется свободная 15-орбиталь с энергией —13,6 эВ. При контакте Не и Н возникает НеН -ион, а-МО которого можно представить как линейную комбинацию 15-орбиталей атома Не и иона Н  [c.140]

    Можно считать, что третья связь образована по донорно-акцепторному механизму (кислород -. цонор элек1ронной пары, углерод акцептор). Тройная связь С=0 очень прочная ( св = 1076 кДж/моль, = ИЗ пм), что обусловливает химическую пассивность СО в обычных условиях. [c.149]

    В ионе [Р1С14] атом платины химически насыщен за счет акцептирования от двух ионов хлора двух электронных пар. В результате атом платины образует с участием своих яр -орбиталей четыре атомные связи, нз которых две возникли по донорно-акцепторному механизму  [c.51]

    Из этих схем видно, что ковалентная связь образована неспаренными электронами бора и фтора. Кроме этого, образованы еще две ковалентные связи по донорно-акцепторному механизму (за счет двух свободных орбиталей атома бора и двух неподеленных пар атомов фтора, они обозначены пунктиром). Таким образом, в молекуле ВР валентность атомов и бора и фтора равна трем, но степень окисления бора равна +1, а фтора —1. Наличием трех химических связей объясняется большая энергия саязи этой молекулы (778 кДж/моль). [c.60]

    Донорно-акцепторный механизм возникновения ковалентной связи отличается от обменного механизма только происхождением электронной пары, ответственной за химическую связь. При донор-яо-акцепторном механизме связь осуществляется за счет неподеленной электронной пары, а при обменном механизме — поделенной пары электронов. Во всем остальном оба вида ковалентной связи тождественны понижение общей энергии системы (см. рис. 33), атипараллельность спинов электронов, перекрытие электронных облаков (см. рис. 34). Поэтому образование, например, молекулы НР можно трактовать на основе обоих механизмов возник-аювения ковалентной связи  [c.96]

    В целом оксид углерода представляет собой пример химического соединения, когда валентности элементов больше числа неспаренных электронов. Углерод и кислород трехвалентны, хотя атомы этих элементов имеют по два неспаренных электрона. Не следует думать, что оксид углерода — исключение. Наоборот, подавляющее большинство неорганических соединений образуется или на основе донорно-акцепторной связи , или одновременно сочетает в себе обменный и донорно-акцепторный механизмы. Обратимся к примеру сульфида цинка, кристаллохимическое строение которого показано на рис. 4. Каждый атом цинка связан с четырьмя атомами серы и, наоборот, каждый атом серы — с 4 атомами цинкг. Поэтому атомы цинка и серы проявляют одинаковую валентность, равную четырем. Между тем атом цинка в нормальном состоянии не имеет ни одного неспаренного электрона, а атом серы характеризуется двумя одиночными электронами. При возбуждении атома цинка происходит промотирование электрона 4з нй 4р и появляются два неспаренных электрона  [c.97]

    Обобщение огромного теоретического и экспериментального материала современной химии приводит к выводу, что валентность элемента (число ковалентности) равна числу электронных орбиталей его атома, участвуюш,их в образовании химических связей как по обменному, так и по донорно-акцепторному механизму. С этой точки зрения углерод и кислород в СО трехвалентны потому, что у атомов этих элементов в образовании химических связей участвуют по три 2р-орбитали. В сульфиде цинка возникновение парноэлектронных связей требует участия одной 5- и трех р-орбиталей со стороны обоих элементов. Поэтому и цинк и сера четырехвалентны в сульфиде цинка. [c.98]

    Рассмотрим еще несколько примеров определения валентности атомов. На рис. 43 показано строение валентных уровней атомов бора и фтора, т. е. строение их наружных уровней и электронное строение молекулы BF. У атома фтора неспаренный электрон размещен в орбитали, находящейся под соответствующей орбиталью атома бора. Это сделано для наглядного показа механизма возникновения химических связей в молекуле. Из рис. 43 видно, что ковалентная связь образована неспарен-иыми электронами бора и фтора. Кроме этого, образованы еще две ковалентные связи по донорно-акцепторному механизму (за счет двух свободных орбиталей атома бора и двух неподеленных пар атома фтора, обозначенных пунктиром). Таким образом, в молекуле ВР валентность атомов и бора и фтора равна трем (но /гв = + 1, а Пр=—1). Наличием трех химических связей объясняется большая устойчивость этой молекулы. [c.109]


Смотреть страницы где упоминается термин Химическая донорно-акцепторный механизм: [c.47]    [c.228]   
Неорганическая химия (1987) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Акцепторная РНК

Химическая донорно-акцепторная

Химическая механизм

донорные



© 2024 chem21.info Реклама на сайте