Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутан термическое применение

    Как было указано выше, из газообразных парафиновых углеводородов термическому дегидрированию без применения катализатора при определенных условиях можно подвергать лишь этан с получением соответствующего олефина-этилена. Уже следующий углеводород — пропан реагирует в двух направлениях параллельно с реакцией дегидрирования в пропилен, протекает также реакция распада углеводородной цепи с образованием этилена и метана, причем вторая реакция преобладает. В аналогичных условиях н-бутан, н-пентан и изопентан реагируют, главным образом, с распадом углеводородной цепи и образованием более иизкомолекулярных олефинов. Термическое дегидрирование в соответствующие олефины без распада углеводородной цепи имеет лишь подчиненное значение. Из углеводородов этого ряда, сравнительно устойчив к термическому распаду также и изобутан, который может термически дегидрироваться в изобутилен. При этом, конечно, имеет место также и распад на пропилен и метап, но в отличие от н-бутана значительное количество изобутана (около 60% мол.) превращается в изобутилен. Ус- [c.62]


    Термическим хлорированием бутана при объемной скорости 300 час-1 и молекулярном отношении бутан хлор 4,5 1 практически получают только монохлориды. В случае применения для этой цели гетерогенных катализаторов (активной окиси алюминия, железа, силикагеля, хлорной меди и т. д.) при 170—200° степень использования хлора достигает 100%, а в продуктах реакции наряду с монохлоридами содержится большое количество полихлоридов. [c.122]

    При применении в качестве сырья бутан-бутеновой фракции смесь бутенов хлорируют в газовой фазе при температуре около 400 С с образованием дихлорбутенов (смесь 1-хлор-2-бутена и З-хлор-1-бутена) и дихлорбутанов. Полученную смесь разделяют, моно.хлорбутены подвергают термическому дегидрохлорированию в трубчатом реакторе при температуре около 600 °С с образованием бутадиена и хлористого водорода бутадиен возвращают в хлоратор. Смесь дихлорбутенов подвергают изомеризации и далее обрабатывают так же, как в процессе на основе бутадиена. [c.422]

    При производстве газового бензина помимо основного продукта получаются сухой газ (примерно 90% метана, 5% этана и 5% пропана), пропановая и бутановая фракции (97—98%-ной чистоты). Эти продукты представляют определенный интерес для промышленности синтетических каучуков. Сухой отбензиненный газ, как и непосредственно сухой естественный газ, можно применять для получения ацетилена, пропановая фракция при пиролизе может дать этилен, а из бутановой фракции легко путем дегидрогенизации получить изобутилен и дивинил. Жидкие пропан и бутан уже находят себе применение в ряде других случаев для бытового индивидуального потребления в качестве топлива, в качестве холодильного агента (пропан), при термической обработке металлов, в качестве растворителей и т. д. [c.50]

    Исходя из соображений кинетики и термодинамики и промышленной практики термической деструкции углеводородов, можно полагать, что наиболее благоприятными условиями для образования углеводородов С4 и С5 являются температуры, лежащие между температурой крекинга на бензин и пиролиза на этилен и пропилен, под давлением с применением водяного пара. Наличие цикланов в исходном сырье может положительно сказаться на выходах диеновых углеводородов (дивинила, изопрена) наряду с олефинами. Сырьем для такого процесса наряду с вышеуказанными продуктами могли бы служить и более высоко-кипящне фракции нефти — керосины парафинистых нефтей, парафин, петролатум и др. Такой процесс, несомненно, имеет существенные преимущества перед каталитическими процессами дегидрирования бутанов и изопентана. Здесь имеются практически неограниченные возможности по сырью, по организации мощных некаталитических установок, по получению фракций более богатых непредельными углеводородами, чем аналогичные фракции, получаемые в процессах дегидрирования. [c.56]


    Наименее технологически разработанным из способов получения ацетилена является термический, так как для его аппаратурного офорлшения [1, 4] требуется материа.л высокой жаростойкости. В то Яхе время термический способ получения ацетилена из углеводородов наиболее пригоден для нереработки сырья тяжелее метана (пропан, бутан), дающего при пиролизе, газы, содержащие одновременно ацетилен и этилен. Этот способ должен быть очень экономичным и простым, так как он не связан с бо.11ьшими затратами электроэнергии, расходом кислорода и применением сложной аНна-ратуры. [c.180]

    Как было указано выше, при стабилизации газового бензина освобождаются пронан и бутан. Смесь этих газов нашла в США широкое применение в качестве особого топлива ( нгидкий газ ) для бытовых и промышленных целей. После отделения бутана, который идет ныне на производство синтетического каучука, газ, состоящий в основном из пропана, нагнетается в баллоны со специальными редукционными вентилями и доставляется на места потребления. Постепенно жидкий газ получает в Америке все более широкое распространение, особенно в местах, удаленных от газовых районов и заводов. Кроме домашнего применения (газовые плиты, печи и т. п.), жидкий газ с успехом употребляется так>ке при резке, сварке металлов (вместо ацетилена) и других способах термической их обработки. [c.132]

    Конечно, при выборе метода переработки метана коксового газа в ацетилен нужно исходить из конкретных условий того или иного экономического района. Тем не менее можно сказать заранее, что эЛектрокрекйНГ метана, требующий больших затрат электроэнергии и минимального расхода углеводородов, следует осваивать в районах с богатыми источниками дешевой электроэнергии и ограниченными ресурсами сырья. Метод термического крекинга, особенно в трубчатых аппаратах, нашел применение главным образом в случае переработки гомологов метана (пропан, бутан и др.). Что же касается коксохимической промышленности, то в этом случае, с учетом больших ресурсов метана коксового газа и возможности комбинирования ацетиленового производства с кислородными станциями металлургических заводов, наиболее приемлемым явится, по-видимому, метод окислительного пиролиза. [c.119]

    Температура термической диссоциации углеводородов метанового ряда уменьшается с увеличением их молекулярного веса. А. Е. Чи-чибабин [28] приводит следующие данные о температуре разложения углеводородов до элементарного углерода метан 800 °С, пропан 700—800 °С, бутан 650—750 °С. Поэтому применение пропан-бута-новых фракций для сжигания в шахтных печах требует соблюдения некоторых специфических условий. [c.61]


Смотреть страницы где упоминается термин Бутан термическое применение: [c.554]    [c.269]    [c.259]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Бутан

Бутан Бутан

Бутанал



© 2025 chem21.info Реклама на сайте