Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические исследования в промышленности, цели

    В связи с внедрением в промышленности новых процессов переработки, а также изменением требований к ассортименту и качеству нефтепродуктов предлагается пересмотреть программу исследования нефтей с целью расширения и уточнения ее [21], Расширенной программой исследования нефтей предусматривается определение кривых разгонки нефти, устанавливающих зависимость выхода фракций от температуры кипения и определяющих их качество давления насыщенных паров содержания серы асфальтенов смол силикагелевых парафинов кислотного числа коксуемости зольности элементного состава основных эксплуатационных свойств топливных фракций (бензинов, керосинов, дизельного топлива) группового углеводородного состава узких бензиновых фракций выхода сырья для каталитического крекинга, его состава и содержания в нем примесей, дезактивирующих катализатор потенциального содержания дистиллятных и остаточных масел качества и выхода остатка. [c.35]


    Процесс гидроочистки нефтяных остатков от повышенного содержания в них серы получил развитие после внедрения в промышленность в 60-х годах гидрокрекинга тяжелого дистиллятного-и остаточного сырья, имевшего целью повысить выход из нефти бензина и дизельного топлива, а также улучшить качество сырья для каталитического крекинга. При осуш ествлении таких процессов получался гидрообессеренный остаток в относительно небольшом количестве как побочный продукт. Позднее, при возникновении проблемы получения малосернистых котельных топлив, исследования процессов гидрокрекинга были направлены на максимальное удаление из остатков серы при умеренном выходе дистиллятных продуктов. Были созданы процессы и построены промышленные установки в США, Японии, Мексике и Кувейте по получению малосернистого котельного топлива при прямом гидрообессеривании. [c.108]

    Мы указали два крайних случая, относящиеся к целям каталитических исследований, а в действительности существует громадное число вариантов между теоретической работой над новым катализатором и оценкой продажного промышленного катализатора. Часто фирмы, производящие катализаторы, работают с автором изобретенного катализатора, чтобы освоить его промышленное производство. Возможна аренда спектроскопических приборов, если степень их использования недостаточно велика, чтобы оправдать их покупку. Для создания катализатора необходим широкий круг специалистов, но отдельные исследования по контракту могут сократить эти трудности. [c.26]

    Катализ — сложное сочетание науки и искусства. Несмотря на уже перечисленные выгоды, обеспечиваемые каталитическими исследованиями, их проведению в промышленности препятствует ряд обстоятельств. В соответствии со своими целями и возможностями каждая корпорация разрабатывает свою стратегию. [c.26]

    Данные лабораторных исследований показывают, что результаты каталитического крекинга сильно зависят от длительности, работы катализатора между регенерациями. При небольшой длительности использования катализатора резко возрастает выход ценных продуктов процесса бензина, пентан-амиленовой, бутан-бутиленовой и пропан-пропиленовой фракций, и они получаются, высокого качества. Данные о влиянии длительности работы катализатора, полученные в промышленных условиях [149], полностью подтверждают результаты лабораторных исследований [150—152]. Эти данные могут быть использованы при корректировке режима установок каталитического крекинга с целью достижения лучших, показателей. [c.117]

    Мы не рассматриваем здесь перспективы развития таких методов химического использования угля или полученного из него кокса, как производство ацетилена через карбид кальция или многочисленные процессы газификации твердого топлива с целью получения окиси углерода и водорода и осуществления синтезов на их основе (синтез аммиака, метанола, получение жидкого горючего по методу Фишера-Тропша, оксосиитез, т. е. каталитический процесс непосредственного присоединения под давлением окиои углерода и водорода к олефинам с целью получения спиртов, альдегидов, кислот и пр.). Хотя названные процессы получили широкое промышленное распространение и в настоящее время в ряде стран ведутся исследования с целью улучшения экономических показателей этих производств [55], однако для условий нашей страны, при возможности более дешевого получения тех же продуктов через нефть и природный газ, указанные направления химического использования угля могут иметь, в лучшем случае, лишь подчиненное значение. [c.65]


    Исследования в области ароматизации парафинов на платиновых катализаторах риформинга проводйЛи главным образом в условиях, значительно отличающихся от применяемых в промышленном процессе. Поэтому полученные результаты, интересные с научной точки зрения, не позволяют прийти к однозначным выводам о роли и значении разных. механизмов ароматизации парафинов в каталитическом риформинге. Однако для этой цели можно в известной мере воспользоваться данными об изменении каталитических свойств, а следовательно, и относительных скоростей реакций, под влиянием некоторых факторов, связанных с условиями эксплуатации платиновых катализаторов риформинга. [c.37]

    Большая часть соединений, предложенных в качестве окислителей битума, не нашла практического применения из-за высокой стоимости, по сравнению с кислородом воздуха, или малой эффективности и недостаточной изученности процесса. Наиболее изученными и внедренными в промышленность каталитическими добавками являются хлориды металлов и некоторые соединения фосфора. Литература но этому вопросу весьма обширна, однако специальных исследований с целью выяснения химических превращений этих добавок и их участия в процессе окисления битума немного [69—72]. [c.143]

    Хотя промышленные процессы гидрирования под высоким давлением широко применялись только в Европе, большой объем исследовательских работ и полузаводских испытаний был проведен и в США. Эти исследования имели целью изучить возможности использования водорода как в качестве реагента для очистки нефтепродуктов, так и для общего повышения выходов наиболее ценных топлив и масел. Хотя многие области использования предоставлялись вполне перспективными, необходимость сооружения дорогостоящих установок для производства требуемого водорода препятствовала промышленному внедрению процессов. Однако появление каталитического риформинга, при котором водород получается в качестве побочного продукта, делает в настоящее время целесообразной разработку промышленных процессов гидрогенизационной обработки нефтепродуктов. [c.117]

    Износоустойчивый окисножелезный катализатор [13, 27, 28, 38] может применяться в комбинированном контактно-башенном способе производства серной кислоты, для которого достаточно окислить около 30 объемн. % ЗОз перед поступлением газа в нитрозную башенную систему с целью получения купоросного масла и разгрузки питрозной системы. При переработке газов от сжигания колчедана ванадиевый катализатор отравляется мышьяком, в результате чего его активность снижается примерно в 2 раза. Железный катализатор мышьяком не отравляется, однако он все же менее активен, чем отравленный ванадиевый катализатор. Окись железа в виде крупных кусков огарка, получаемого при обжиге колчедана, применялась ранее в промышленных аппаратах для окисления сернистого газа. Активность ее достаточно исследована [2, 39—41]. Во взвешенном слое огарок в качестве катализатора не пригоден, так как его истираемость составляет 95% в месяц. Исследованиями [28, 38] было установлено, что можно резко повысить механическую прочность колчеданного огарка за счет введения цементирующих добавок (жидкое натриевое стекло или фосфорная кислота). При этом каталитическая активность огарка практически не снижается. Истираемость такого катализатора составляет 2—3% в месяц. В качестве порообразующего компонента в смесь вводится технический глицерин или другая органическая примесь, выгорающая при прокаливании катализатора. [c.148]

    В большинстве вакуумных дистиллятов различных нефтей содержание парафиновых углеводородов находится на одном уровне. Отношение ароматических к нафтеновым (А Н) изменяется в пределах 0,6-3,25. Как показывают исследования [81], скорость процесса каталитического крекинга промышленного сырья в целом и его отдельных стадий зависит от величины отношения А Н. Так, с увеличением отношения А Н вплоть до значения А Н=1 резко возрастает константа скорости экранирования катализатора коксовыми отложениями, после чего кривая зависимости становится более пологой (рис. 13, кривая 1). При этом вначале быстро (до значений А Н=2), а затем медленнее уменьшаются зна- [c.77]

    Катализатор можно найти, перебирая много образцов, но всегда ставилась и более высокая цель — создать катализатор, основываясь на научных принципах. Стремление к этой цели служит научному прогрессу, которому способствуют и каталитические исследования, финансируемые промышленными корпорациями. [c.23]

    В СССР также разработан ряд каталитических процессов, но они еще не нашли промышленного применения. В Институте горючих ископаемых совместно с УХИНом проведены исследования с целью разработки технологии гидрогенизационной переработки химических продуктов коксования угля для производства бессернистых ароматических углеводородов и резкого увеличения выхода светлых продуктов путем применения для переработки не узких фракций сырого бензола и отдельных углеводородов, выделенных из коксовой смолы, а широких фракций и смесей, отдельные компоненты которых можно подвергать очистке примерно в одинаковых условиях [22, 23]. Совмещенная гидрогенизационная переработка коксохимического сырья позволяет упростить [c.57]

    Несколько лет тому назад в лаборатории исследовательской фирмы Шелл ойл в Хьюстоне были начаты [65] обширные исследования основного источника сырья для каталитического крекинга — западно-техасского мазута. Эти исследования имели целью 1) выяснить детальный состав сырья, применяемого на промышленных установках  [c.141]


    Разнообразие промышленного применения гетерогенного катализа неуклонно возрастает широким фронтом ведутся исследования, имеющие целью разработку усовершенствованных и новых каталитических процессов для производства существующих либо новых продуктов. Благодаря дальнейшему увеличению ассортимента углеводородного сырья и простых промежуточных продуктов, этих потенциально дешевых исходных материалов, постоянно расширяются возможности внедрения нововведений в этой области. [c.113]

    Дальнейшее развитие учения о катализе шло как по пути накопления экспериментальных данных, разработки способов приготовления активных катализаторов, открытия и изучения новых каталитических процессов, внедрения катализа в химическую промышленность, так и по пути развития теории гетерогенного катализа. Однако успехи теоретиков были значительно более скромными, чем успехи экспериментаторов. И это не случайно. Хотя принципиальной разницы между каталитическими и некаталитическими процессами нет, и те и другие подчиняются основным законам химической кинетики, в обоих случаях система реагирующих веществ проходит через некоторое особое, обладающее повышенной энергией активное состояние, в гетерогенных каталитических реакциях наблюдаются специфические особенности. Прежде всего появляется твердое тело, от свойств и состояния которого существенно зависят все явления в целом. Поэтому не случайно, что успехи теории гетерогенного катализа неразрывно связаны с развитием теории твердого тела. Поскольку процесс идет иа поверхности, знание строения поверхности катализатора оказывается решающим для развития теории катализа. Отсюда вытекает тесна я связь развития теории катализа с развитием экспериментального и теоретического изучения адсорбционных явлений. Сложность кетероген-ных процессов, присущие им специфические черты, приводят к тому, что теоретические исследования в этой области не завершилась еще построением теоретических концепций, на базе которых можно было бы обобщить имеющийся фактический ма-териал. Пока можно только говорить о наличии нескольких теорий, в первом приближении обобщающих те или иные экс- периментальные данные. [c.294]

    Но влияние поверхности наблюдается не только в дисперсных системах, роль поверхности чрезвычайно важна в тех случаях, когда на ней осуществляется реакция (катализ твердым веществами, коррозия, поверхностные процессы на полупроводниках и т.д-). В химической промышленности контактный катализ вообще и катализ с участием твердого тела широко используются еще со времен разработанного Габером метода синтеза аммиака фиксацией атмосферного азота. В настоящее время твердые дисперсные катализаторы стали предметом интенсивного изучения в связи с поисками новых методов переработки каменного угля. Катализ применяется в уже существующих и обязательно предусматривается в еще разрабатываемых методах удаления ядовитых и вредных веществ, загрязняющих атмосферу (соединения серы, N0 , СО и т.д.). Многие вопросы, связанные с избирательностью каталитических реакций, также являются важной темой научных исследований. В целом роль каталитических процессов [c.10]

    Еще в начале 20 века химические основы каталитического риформинга были заложены русскими > чеными Н.Д. Зелинским и В.Н. Ипатьевым. В 1940-1945 гг. Б.Л. Молдавским и Н.И. Щуйкиным проводились исследования по промышленной реализации процесса каталитического риформинга с целью получения ароматических углеводородов [129]. В дальнейшем Г.Н. Маслянским, A.B. Агафоновым в ВНИИНефтехим были выполнены заботы по риформингу бензиновых фракций под давлением водорода на синтезированных авторами алюмомолибденовом и алюмохромовом катализаторах [75,156], в результате была разработана модификация процесса риформинга - гидроформинг. Гидроформинг явился первым российским промышленным процессом каталитического риформинга [157]. [c.83]

    Цель работы — освоить приемы исследования каталитической активности промышленного ванадиевого катализатора. [c.188]

    Таким образом, результаты промышленных испытаний фильтра-нейтрализатора газов на автомобилях типа КамАЗ свидетельствуют о возможности обеспечения достаточно высокой степени очистки выхлопных газов от оксида углерода (II). Вместе с этим целесообразно продолжить испытания фильтра, для установления ресурса его работы. После снижения эффективности очистки ниже 50% фильтр необходимо демонтировать, с целью изучения состояния каталитических элементов и возможности их регенерации. Кроме того, необходимо продолжить исследования по оценке эффективности работы фильтра с разными вариантами структуры каталитических элементов и их пространственного расположения в корпусе нейтрализатора. [c.157]

    В статических методах исследования проток реагентов через реакционный сосуд отсутствует и о течении реакции судят по ходу изменения во времени какого-либо кинетического параметра концентрации реагентов, давления, температуры. Для исследования газофазных процессов этот метод применяют в ограниченном количестве случаев — главным образом в экспериментах, требующих предварительной откачки и тренировки катализатора, а также для изучения реакций при пониженном давлении. С этой целью большей частью используют несколько видоизмененные обычные высоковакуу.мные установки, широко применяемые при исследовании гомогенных реакций [1, 2]. Ввиду значительного отличия условий протекания процесса в статических, особенно в вакуумных установках и в реальных промышленных аппаратах и, как следствие, затруднений в интерпретации и использовании лабораторных данных для прикладных кинетических исследований промышленных газофазных реакций статический метод обычно не применяется. Иначе дело обстоит для жидкофазных и газо-жидкофазных реакций, где статические (периодические) процессы довольно широко распространены в промышленности. Кроме того, в статических жидкофазных системах отличие условий работы катализатора от промышленных проточных установок большей частью не столь велико и может быть учтено расчетным путем. Поэтому статический метод весьма удобен для прикладных кинетических исследований жидкофазных гетерогенно-каталитических реакций, особенно процессов, идущих под повышенным давлением. [c.342]

    Отметим, что исследование кинетики сложных каталитических реакций чаще всего может дать основания лишь для неоднозначных соображений о ее механизме, но, не будучи связано с более детальными физическими и физико-химическими исследованиями, не может выявить характера элементарных стадий процесса. С другой стороны, знание кинетики реакций, какой бы механизм ни лежал в их основе, является необходимой предпосылкой всех расчетов промышленных процессов. Для расчетных целей безразлично, ootBOT TByeT ли форма кинетических уравнений детальному механизму каталитического процесса. Зависимость скорости реакций от концентраций реагентов и температуры часто представляют (в некоторой ограниченной области) выражениями типа (П.6) — (П.8) с эмпирическими коэффициентами при этом в формулу (II.8) должны также входить концентрации веществ, тормозящих реакцию, с отрицательными порядками a . Для приближенного формального описания кинетики реакций в широком интервале изменения значений переменных более пригодны уравнения лангмюровского типа. [c.96]

    Около 90 % платины потребляется для научных и промышленных целей 10 % — для приготовления ювелирных изделий. Из платины делают лабораторные приборы, применяемые в аналитических н физнко-хнмичес-кнх исследованиях. Платина служит материалом для фильтров, фильер, термопар для измерения высоких температур, термометров сопротивления, используется в качестве проволоки для обмотки печей электросопротивления и т. д. Уникальная каталитическая активность, достаточная пластичность и жаропрочность сделали платину иаилучшнм катализатором для процесса окисления аммиака до азотной кислоты и в процессах производства серной кислоты контактным способом, в реакциях гидрогенизации, восстановления, производства витаминов и др. Платина с небольшими добавками нридия является основным конструкционным материалом для емкостей оптического стекловарения. На основе платины разработан ряд сплавов с уникальными свойствами для растяжек особо точных приборов, для изготовления магнитов сложной формы, для [c.526]

    В настоящем издании собраны все основные работы Андрея Владимировича Фроста по кинетике и механизму каталитических превращений углеводородов. Эта группа исследований занимала основное место в научной деятельности А. В. Фроста, особенно в последнее десятилетие его жизни. Тесно сочетая эти работы с термодинамическими экспериментальными исследованиями и расчетами, А. В. Фрост одновременно связывал их с процессами каталитической переработки нефтепродуктов, стремясь к более глубокому их пониманию с целью дальнейшего совершенствования промышленных методов, в развитии которых он принимал непосредственное участие. Особенно большое внимание в работах А. Б. Фроста уделялось каталитическим превращениям органических соединений на искусствен-пых алюмосиликатах и природных глинах эти исследования имели целью теоретическое обоснование промышленных процессов и служили одновременно основой для развития оригинальных взглядов А. В. Фроста на проблему происхождения нефти. Труды А. В. Фроста по этому вопросу также включены в настоящий, том. [c.3]

    От промышленного каталитического реактора импульсный реактор так далек по своим размерам и режиму работы, что его лучше не использовать в практических целях. Он не удовлетворяет столь многим установленным критериям, что их не стоит и уточнять. Импульсные реакторы, предназначенные для научных исследований, рассмотрены в статье [25]. [c.66]

    Считается, что в настоящее время примерно 80% всей химической продукции изготовляется каталитическим путем. В подавляющем большинстве случаев для этих процессов полагается общепринятой необходимость стабилизации всех входных параметров, что, якобы, гарантирует высокую эффективность производства в целом. Между тем в результате исследований Ю. Ш. Матроса с сотр. в Институте катализа Сибирского отделения АН СССР было показано, что при искусственно создаваемых нестационарных условиях в реакторе часто можно добиться более благоприятных, чем в стационарном режиме, условий и тем самым значительно увеличить эффективность промышленных производств [44—46]. [c.258]

    В 1940-1945 гг. Б.Л. Молдавским в Центральном институте авиационных топлив и масел (ЦИАТИМ) и Н. И. Шуйкиным в Институте органической химии (ИОХ) АН СССР проводились исследования по промышленной реализации процесса каталитического риформинга с целью получения ароматических углеводородов [38]. Дальнейшие исследования, завершившиеся разработкой первого отечественного промышленного процесса гидрориформинга, были осущест-вленны в ЦИАТИМ Г. Н. Маслянским, А. В. Агафоновым, А. Д. Сулимовым с соавторами. Комплексные исследования, связанные с промышленной реализацией процесса каталитического риформинга на различных композициях платиновых катализаторов, были выполнены во Всесоюзном научно-исследовательском институте нефтехимических процессов (ВНИИНефтехим) Г. Н. Маслянским с соавторами. [c.13]

    С целью создания рациональной схемы глубокой бе зостаточной переработки нефти с отбором до 80 % светлых продуктов хорошего качества в АзНИИ НИ им. В. В. Куйбышева проведены исследования по разработке нроцесса одноступенчатого каталитического крекинга нефти, которые были начаты в 19.51 —1952 гг. Эксперименты проводили на пилотных установках и на опытно-промышленной установке Бакинского крекинг-завода им. Вано Стуруа. Показатели, снятые по процессу одноступенчатого крекинга нефти на опытно-промышленной установке, подтвердили основные выводы и результаты, полученные на пилотных установках по крекингу гюргянской, небитдагской и ромашкинской нефтей. [c.234]

    В монографии приводятся результаты оригинальных теоретических и экспериментальных исследований гетерогенных каталитических процессов в искусственно создаваемых нестационарных условиях, при которых увеличиваются Яроиз-водительность и избирательность катализатора. Обсуждаются вопросы математического описания нестационарных процессов на поверхности катализатора и в реакторе в целом, их оптимизации, формирования и движения теплового фронта в неподвижном слое катализатора. Описываются различные методы организации нестационарных процессов, рассматривается широкое промышленное применение нестационарных методов катализа. [c.2]

    Вследствие высокого содержания полициклических ароматических углеводородов гидроочистка циркулирующих газойлей каталитического крекинга имеет большое значение, так как пoзвoляet получать хорошие результаты по выходу бензина и кокса при ПС-следующем крекинге этих газойлей. Поэтому исследованиям, посвященным гидроочистке циркулирующих газойлей с целью улучшения показателей процесса каталитического крекинга, посвящено много работ. Этот метод широко применяется в промышленности для увеличения глубины превращения сырья крекинга [298]. [c.193]

    Мы уважительно и бережно относимся к нашим потребителям, стараемся учесть их требования к качеству кокса. Поэтому в последнее время установка коксования находится под пристальным вниманием спещаалистов завода. С целью расширения сырьевой базы установки коксования проведен ряд работ по исследованию влияния на процесс коксования различных сырьевых композиций. На установке проведен ряд опытно-промышленных пробегов, в процессе которых в качестве сырья использовали сырьевые композиции, состоящие из гудрона, асфальта установок деасфальтизации, экстрактов селективной очистки масел и тяжелого каталитического газойля. На установке замедленного коксования бьши реализованы мероприятия, позволяющие в настоящее время вырабатывать кокс стабильного качества содержание серы - не более 1,5% ванадия - не более 150 ррш. Это полностью удовлетворяет требования алюминиевой промьппленности. Некоторые компоненты композиции позволили снизить зольность сырого кокса с 0,17 до 0,14- [c.89]

    В 1930-х годах появились первые научные исследования по кинетике реакций, протекающих в проточных системах. Начало этим исследованиям было положено химиками — специалистами в области катализа А. А. Баландиным, Г. К. Боресковым, М. Г. Слинь-ко и М. И. Темкиным (СССР), А. Ф. Бентоном (США), Э. Винтером (Германия). В 1932 г. Г. К. Боресков впервые в качестве одной из основных задач конструирования и расчета трубчатых контактных аппаратов для сернокислотной промышленности назвал обеспечение максимальной скорости процесса и максимального использования контактного объема . Отмечая отставание теории и недостаточное знание закономерностей протекания даже таких важных каталитических процессов, как окисление сернистого газа, он предложил метод проведения этой реакции в условиях не одной оптимальной температуры для всего процесса, а оптимальной кривой изменения температур, характерной для каждого процесса и катализатора . Эти пионерские исследования были продолжены в 1936—1937 гг. с целью установления оптимальных условий контактного процесса — температурного режима и состава исходной газовой смеси. Работы эти следует считать своеобразной экстраполяцией химической кинетики на ту область, которая до 1940-х годов была объектом химической технологии, как науки сугубо прикладной, лишенной права на фундаментальные исследования. [c.152]

    Гетерогенный катализ широко применяется в целом ряде важнейших технологических процессов каталитическое окисление аммиака при производстве NN03, каталитический синтез аммиака, гидрогенизация органических веществ. Развитие теории гетерогенного катализа позволило значительно усовершенствовать эти процессы, а всевозрастающее применение катализаторов в промышленности в свою очередь стимулирует исследования в этой области. [c.237]

    Эффективность очистки тетрахлоридом титана тяжелых фракций нефти представлена в табл. 52. В качестве объектов исследования взяты вакуумные дистилляты (360—500°С) промышленной западно-сибирской нефти. Выбор этих дистиллятов объясняется тем, что в них сосредоточена значительная часть АС при практическом отсутствии асфальтенов и металлсодержащих соединений. Исследованы вакуумные дистилляты двух типов (см. табл. 52). ВД-1 представляет собой широкую фракцию 360— 490°С, которую используют в качестве сырья для каталитической и гидро-генизационной переработки в производстве смазочных материалов и топлив. Около 60% АС являются АО. ВД-2 представляет собой тяжелый дистиллятный компонент, вовлекаемый в нефтепереработку и используемый в производстве вязкого компонента моторных масел. По характеристикам ВД-2 приближается к нефтяным остаткам. В связи с повышенным содержанием гетероорганических соединений, аренов и смол этот дистиллят не применяется в процессах каталитической и гидрогениза-ционной переработки, хотя принципиально может служить сырьем для получения более легких топлив после соответствующей очистки. Из представленных данных видно, что тетрахлорид титана и хлорид кобальта довольно эффективно удаляют АС из вакуумных дистиллятов. При выборе неводных растворителей руководствовались общими требованиями к свойствам экстрагентов — их высокой плотности, несмешиваемости с углеводородами, высокой температуре кипения и разложения, низкой температуре застывания, хорошей растворимости в воде, способности к эффективному взаимодействию с комплексообразователем с целью его максимально полного извлечения из рафината, доступности и дешевизне. Свойства использованных в исследованиях неводных растворителей пред- [c.100]

    Исследования по каталитическому крекингу арланского вакуумного газойля в лабораторных и пилотных условиях [11—13], а также на промышленной установке [14] показали, что материальный баланс этого процесса хуже по сравнению с балансом каталитического крекинга вакуумного газойля менее сернистой и смолистой ромашкинской нефти. По каталитическому крекингу дистиллятов коксования мазута арланской нефти до настоящего времени экспериментальных работ не проводили. Настоящая работа ставит своей целью получить сравнительные данные по каталитическому крекингу дистиллятов коксования мазута и вакуумного газойля арланской нефти. Эти данные необходимы при разработке оптимальных схем заводов по переработке высокосернистых нефтей. [c.85]


Смотреть страницы где упоминается термин Каталитические исследования в промышленности, цели: [c.4]    [c.126]    [c.20]    [c.350]    [c.115]   
Катализ в промышленности Том 1 (1986) -- [ c.22 , c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Целит

Цель

Цель исследований



© 2025 chem21.info Реклама на сайте