Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий, диаграмма энергетических уровней

    Литий. На рис. 8.1 показана диаграмма энергетических уровней атома лития. Заметим, что для каждого состояния указаны только его спиновая мультиплетность и значение квантового числа L. Линии, соединяющие состояния, соответствуют переходам, наблюдаемым при прямом поглощении или испускании электромагнитного излучения. Все состояния, указанные над основным состоянием, соответствуют конфигурациям, получаемым при возбуждении одного 25-электрона на более высокий уровень. Кроме того, возможны также состояния, возникающие при возбуждении одного ls-электрона однако эти состояния обладают значительно более высокой энергией, чем состояния, указанные на диаграмме. Поскольку все рассматриваемые состояния соответствуют наличию только одного электрона за пределами замкнутой оболочки, для них возможно лишь одно спиновое состояние — дублетное. [c.169]


    Объяснение электропроводности металлов, полупроводников и диэлектриков дается на основе квантовой теории строения кристаллических тел — так называемой зонной теории. Рассмотрим некоторые общие положения этой теории. Переход атомных паров в кристаллическое вещество можно рассматривать как химическую реакцию, так как оптические, термодинамические, электрофизические и другие свойства твердых тел отличаются от свойств газов. Важно отметить, что атомные спектры газов имеют линейчатое строение, а спектры твердых тел имеют сплошной характер или полосатую, очень сложную структуру. Уже при взаимодействии двух одинаковых атомов дискретные атомные энергетические уровни расщепляются и превращаются в полосы. Тем большее расщепление уровней происходит, когда большое число N атомов, например лития, сближается с далеких расстояний до расстояний, на которых они находятся в кристаллической решетке. На рис. 70, а это расстояние между ядрами обозначено на оси абсцисс буквой о- По оси ординат отложена энергия. Находясь на больших расстояниях, атомы не взаимодействуют друг с другом, и диаграмма уровней будет такая же, как и для изолированного атома лития (1 25 ). При сближении атомов начнется взаимодействие между ними, прежде всего у каждого из них станет расщепляться уровень валентных электронов (2х). Уровень 2з) расщепляется в систему весьма близко расположенных N уровней, образуя целую полосу (зону) уровней. Более глубокие уровни при образовании кристалла оказываются совсем не расщепленными или только незначительно расщепленными. [c.233]

    Второй период начинается с щелочного элемента лития 1л (2 = 3). У лития три электрона, два из них занимают 1ж-А0, а третий уже вынужден заселять более высокий энергетический уровень с л-2. Этот уровень содержит два подуровня ир (/-Ои/=1). Число подуровней в многоэлектронном атоме совпадает со значением главного квантового числа. Минимальным значением энергии для уровня с л = 2 обладает 2х-А0, которую и занимает третий электрон. Электронная конфигурация атома лития для основного состояния 1х 2х или [Не ]2х (см. ниже энергетические диаграммы). Для сокращения формы записи электронной конфигурации все АО предыдущих периодов заменяют символом благородного газа (в квадратных скобках), завершающего предшествующий период. [c.45]

    Второй период системы открывают литий и бериллий, у которых внешний энергетический уровень содержит лишь -электроны. Для этих элементов схема молекулярных орбиталей ничем не будет отличаться от энергетических диаграмм молекул и ионов водорода и гелия, с той лишь разницей, что у последних она построена из 1 -электронов, а у Ь12 и Ве -из 2 -электронов. 1 -электроны лития и бериллия можно рассматривать как несвязывающие, т.е. принадлежащие отдельным атомам. Здесь будут наблюдаться те же закономерности в изменении порядка связи, энергии [c.58]


    Зависимость энергии электрона как от квантового числа I, так и от главного квантового числа п показана на диаграмме экспериментальных энергетических уровней (рис. 5.11), где уровень 2з (при = 0) показан ниже уровня 2р (при I = 1), уровень 3 ниже уровня Зр, который в свою очередь лежит ниже уровня 3 и т. д. Это же наблюдается (рис. 5.14) в случае возбужденных состояний атома лития , а также всех других атомов, кроме атома водорода. Объяснение такого поведения было предложено Шрёдингером в 1921 г. еще до разработки квантовой механики его объяснение иллюстрируется схематическим представлением орбит, приведенным на рис. 5.15 и 5.16. Шрёдингер исходил из того, что внутреннюю электронную оболочку лития можно заменить эквивалентным зарядом электричества, равномерно распределенным по поверхности сферы соответствующего радиуса, который для лития должен составлять около 0,33 А [пример 5.5, с использованием коэффициента /г в уравнении (5.12)]. Валентный электрон вне этой оболочки должен двигаться в электрическом поле ядра, имеющем заряд -ЬЗе, и в поле двух. йГ-электронов с зарядом —2б (иными словами, в поле заряда +в, равного заряду протона). Можно ожидать, что пока электрон находится вне -оболочки, его поведение будет соответствовать поведению электрона в водородоподобном атоме. Орбита такого рода показана на рис. 5.15 она называется непроникающей орбитой орбиталью). На основании схемы рис. 5.14, можно полагать, что /- или -электрон в возбужденном атоме лития по существу будет [c.130]


Смотреть страницы где упоминается термин Литий, диаграмма энергетических уровней: [c.290]   
Современная общая химия Том 3 (1975) -- [ c.109 ]

Современная общая химия (1975) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Литий, диаграмма энергетических

Уровни энергетические

Энергетическая диаграмма

Энергетических уровней диаграмм



© 2025 chem21.info Реклама на сайте