Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентные электроны второго периода элементы

    У элементов второго периода периодической системы внешняя (валентная) электронная оболочка состоит только из [c.75]

    Правило октета играет очень важную роль при составлении льюисовых структурных формул. Для неметаллических элементов второго периода В, С, N, О, F) исключения из этого правила крайне редки. Нетрудно объяснить, почему это так. Атомы элементов второго периода имеют устойчивые 2s- и 2р-орбитали, и магическое число 8 соответствует завершенной валентной конфигурации 2s"2p . Добавление новых электронов к такой замкнутой оболочке невозможно, потому что следующие доступные для заселения электронами атомные орбитали у элементов второго периода-это расположенные намного выше по энергии 3 -орбитали. [c.475]


    На примере Н2 и р2 можно понять, что происходит во многих молекулах, где электронные пары образуют связи, в результате чего каждый атом, приобретает замкнутую электронную оболочку. Для построения замкнутой электронной оболочки атому водорода требуются два электрона, которые заполнят его валентную Ь-орбиталь. Каждому атому элемента второго периода требуется для создания замкнутой электронной оболочки восемь- электронов (восьмерка октет), потому что на 2х- и 2р-орбиталях размещается до восьми электронов (2 "2р ). Это требование получило название правила октета. В примере с молекулой 2 каждый атом Р после образования связи оказывается окруженным восемью электронами. [c.467]

    Гибридизация в молекулах аммиака и воды. Мы вкратце обсудили геометрическое строение соединений бериллия, бора и углерода, пользуясь концепцией гибридизации. При дальнейшем движении по периоду вправо мы переходим к соединениям азота и кислорода, геометрия которых уже обсуждалась в рамках чистых р-орбиталей. Такое рассмотрение нельзя признать целиком удовлетворительным, если помнить, что экспериментальные значения валентных углов в молекулах HgN (107°18 ) и Н О (104°ЗГ) больше, чем между чистыми р-орбиталями (90°). С другой стороны, экспериментальные величины гораздо ближе к 109°28 — тетраэдрическому углу при sp -гибридизации связей. Так возникла идея о существовании общей для всех элементов второго периода гибридизации атомных s- и р-орбиталей. В применении к молекулам HgN и HjO это выглядит так, как показано на рис. III. 15. Октет электронов вокруг каждого центрального атома располагается на четырех sp -гибридных орбиталях, причем в моле- [c.183]

    Рассмотренные примеры показывают, что атомы обладают разнообразными возможностями для образования ковалентных связей. Последние могут создаваться и за счет неспаренных электронов невозбужденного атома, и за счет неспаренных электронов, появляющихся в результате возбуждения атома ( распаривания электронных пар), и, наконец, по донорно-акцепторному способу. Тем не менее, общее число ковалентных связей, которые способен образовать данный атом, ограничено. Оно определяется общим числом валентных орбита-лей, т. е. тех орбиталей, использование которых для образования ковалентных связей оказывается энергетически выгодным. Квантовомеханический расчет показывает, что к подобным орбиталям принадлежат s- и р-орбитали внешнего электронного слоя и -орбитали предшествующего слоя в некоторых случаях, как мы видели на примерах атомов хлора и серы, в качестве валентных орбиталей могут использоваться и d-орбитали внешнего слоя. Атомы всех элементов второго периода имеют во внешнем электронном слое четыре орбитали при отсутствии (i-орбиталей в предыдущем слое. Следовательно, на валентных орбиталях этих атомов может разместиться не более восьми электронов. Это означает, что максимальная ковалентность элементов второго периода равна четырем. Атомы элементов третьего и последующих периодов могут использовать для образования ковалентных связей не только s- и р-, но также и d-орбитали. Известны соединения d-элементов, в которых в образовании ковалентных связей [c.125]


    Проведенный выше обзор валентности элементов второго периода периодической системы позволяет понять причину отличия этих элемеитов от других. Особенно сильно это отличие выражено у трех элементов — азота, кислорода и фтора. Кроме особенностей,. обусловленных малым радиусом атомов и ионов, отличия данных элементов связаны также и с тем, что их внешние электроны находятся во втором слое, в котором имеются только четыре квантовые ячейки. Поэтому данные элементы не могут проявлять высокие валентности, которые известны для их аналогов. [c.83]

    Льюисовыми структурами (валентаыми структурами, валентными схемами) называются графические электронные формулы молекул и комплексных ионов, где для обозначения обобществленных между атомами связьшающих электронных пар (связей) используются прямые линии (валентные штрихи), а для обозначения неподеленных пар электронов используются две точки. Для молекул и комплексных ионов, содержащих только элементы первого и второго периодов, наилучшие льюисовы структуры характеризуются тем, что в них каждый атом окружен таким же числом электронов, как атом благородного газа, ближайшего к данному элементу по периодической системе. Это означает, что атом Н должен быть окружен двумя электронами (одна электронная пара, как у Не), а атомы неметаллических элементов второго периода (В, С, К, О, Г) должны быть окружены восемью электронами (четыре электронные пары, как у 1 е). Поскольку восемь электронов образуют замкнутую конфигуращ1Ю 2х 2р , правило записи льюисовых структур требует окружать каждый атом элемента второго периода октетом (восьмеркой) электронов, и поэтому называется правилом октета. [c.501]

    ПИЯХ с кислородом, следовательно, можно ожидать, что азот пятивалентен в таких соединениях, как азотная кислота ННОз и азотный ангидрид МоОд. Поскольку, однако, азот является самым типичным неметаллом среди элементов V группы и одним из наиболее характерных неметаллов вообще, связь между атомами азота и кислорода должна носить по преимуществу ковалентный характер. По теории ковалентной связи соединение атомов в. молекулы осуществляется за счет образования общих электронных пар из неспаренных электронов различных атомов. Валентность элементов равна числу неспаренных электронов у атомов соединяющихся элементов. Поскольку же максимальное число неспаренных электронов у атомов элементов второго периода не может превышать четырех, то и максимальная валентность всех элементов этого периода, включая азот, не должна быть выше четырех. [c.78]

    Элементы 2-го периода периодической системы имеют только 4 валентных АО (одна 2з- и три 2р-), поэтому их максимальная ковалентность равна 4. Число валентных электронов в атомах элементов, расположенных в периоде левее углерода, меньше числа АО, а в атомах элементов, расположенных правее, наоборот, больше. Поэтому первые могут быть акцепторами, а вторые — донорами электронных пар. В своем обычном валентном состоянии атом углерода имеет 4 неспаренных электрона, что совпадает с числом валентных АО, поэтому связей по донорно-акцептор-ному механизму он не образует. [c.115]

    У всех элементов, находящихся в одной и той же подгруппе периодической системы, строение внешних электронных оболочек одинаково, поэтому в свойствах таких элементов наблюдается наибольшее сходство, хотя металлические свойства в группе сверху вниз нарастают. Характер изменения свойств в группах элементов в данном случае определяется главным образом изменением радиусов атомов. Однако необходимо обратить внимание на следующее. При переходе в группе от второго к третьему периоду свойства элементов меняются настолько резко, что объяснить это одним лишь изменением радиуса атома нельзя. Например, кислород бывает только двухвалентным, а сера и все остальные элементы данной подгруппы могут иметь валентность 2, 4 и 6. Для фтора характерна исключительно одновалентность, в то время как хлор и остальные галогены могут быть 1-, 3-, 5- и 7-валентными. Такое изменение свойств при переходе от второго к третьему периоду обусловлено некоторыми особенностями структуры внешних электронных оболочек атомов элементов второго периода, с [c.62]

    Говоря современным языком, с каждой из четырех сторон вокруг символа химического элемента можно ассоциировать одну из четырех орбиталей х, Р <, Ру, р . С учетом количества валентных электронов атомы элементов второго периода, например, можно изобразить так  [c.465]

    Бериллий. В молекуле бериллия, Всг, четыре валентных электрона. Два из них спарены на связывающей молекулярной орбитали а , а два-на разрыхляющей а. Такая электронная конфигурация означает отсутствие эффективного числа связей, что согласуется с опытными данными - в отличие от устойчивых двухатомных молекул элементов второго периода молекула Вб2 не существует. [c.525]

    Таким образом, второй период каждого этапа является, с одной стороны, продолжением, а с другой — повторением первого. В этом и заключается суть диалектического повторения, названного Б. М. Кедровым "повторением на новом более высоком уровне". Координатой, определяющей "высоту этого уровня и является последовательный (накопительный) рост числа протонов, нейтронов и электронов в атомах вида (химического элемента). На спиральной модели Системы химических элементов хорошо видна искусственность деления валентных групп на главную и побочную в табличном варианте. В генетически иерархической структуре естественной системы атомов нет предпосылок для этого. [c.170]


    Для всех З лементов, кроме элементов подгруппы ЗВ, цинка и кадмия, характерна переменная валентность. У элементов, стоящих в первой половине периодов до подгруппы 7В включительно, максимальная валентность соответствует номеру подгруппы (все -электроны холостые). Во второй половине только для 5 элементов (Ни, Оз, 2п, Сс1 и Hg) осуществляется максимальная валентность, а для 10 элементов она не проявляется или (для элементов подгруппы меди) превышает номер подгруппы. [c.431]

    Рассмотрим с этих позиций ковалентность атомов элементов второго и частично третьего периодов периодической системы. В связи с тем, что в образовании химической связи принимают участие главным образом валентные электроны, то нагляднее рассматривать электронные конфигурации только внешних электронных оболочек атомов. [c.120]

    Обратимся к элементам, расположенным в периодической системе ниже второго периода. Одна из особенностей этих элементов, отличающая их от элементов второго периода, заключается в том, что у них внешние (валентные) электронные оболочки содержат больше 4 орбиталей, минимум 9 орбиталей в третьем периоде. Вспомним, что на внешней электронной оболочке любого элемента не может быть больше 8 электронов, которые у атома в основном (не возбужденном) состоянии могут занять только 4 орбитали 5 и р. Все остальные орбитали ( , / и т. д.), которые имеются на внешних оболочках атомов элементов, начиная- с третьего периода, будут вакантными. Наличием таких вакантных орбиталей можно объяснить валентности элементов, расположенных ниже второго периода. [c.75]

    Первоначальная шкала электроотрицательностей Полинга была выбрана таким образом, чтобы элементам второго периода от углерода до фтора соответствовали значения от 2,5 до 4,0, изменяясь на 0,5 при переходе к каждому следующему элементу. Значения электроотрицательности элементов в этой шкале приведены на рис. 6.9 в виде диаграммы. Размеры кружков на этой диаграмме отвечают относительным радиусам атомов, а расположение элементов приблизительно воспроизводит форму таблицы периодической системы однако положения элементов в пределах периодов смещены так, чтобы соответствовать их значениям электроотрицательностей в указанной шкале. Вследствие этого элементы, принадлежащие к одной группе периодической системы, располагаются на диаграмме не по вертикальным колонкам. Со времени появления первоначальной шкалы Полинга значения энергий разрыва химических связей, на которых она была основана, в результате уточнения подверглись значительным изменениям. Результаты пересчета электроотрицательностей элементов по методу Полинга с подстановкой новых значений энергий связи представлены в табл. 6.5. Общий ход изменения электроотрицательности соответствует тому, чего и можно было ожидать для элементов одного периода или одной группы электроотрицательность возрастает при уменьшении размеров атома. Водород, который, строго говоря, не принадлежит ни к одной из групп, имеет приблизительно такую же электроотрицательность, как бор. Следует также отметить, что электроотрицательность металлов первой, второй и третьей групп возрастает при увеличении числа валентных электронов. В дальнейшем будет показано, каким образом на основании учета этих закономерностей можно судить о характере связи атомов в молекулах. [c.104]

    Для того чтобы объяснить эти аномалии, необходимо сделать ряд допущений, некоторые из которых уже были введены и обоснованы ранее. Так, неподеленная пара электронов, которая занимает довольно большую диффузную орбиталь, оказывает большее отталкивающее действие на другие пары электронов, чем связываю щие пары, которые занимают более ограниченные двухцентровые орбитали (рис. 6-3). Валентный уровень атомов элементов второго периода (Т1—Не) заполнен, когда он содержит четыре пары электронов, тогда как валентный уровень атомов элементов третьего н последующих периодов может содержать и более четырех пар электронов. Когда заполненные орбитали соприкасаются, силы Паули возрастают очень быстро, так как они изменяются обратно пропорционально межэлектронному расстоянию в некоторой высокой степени . [c.225]

    Рассмотрим электронные конфигурации и валентности элементов второго периода в нормальном и возбужденном состоянии (табл. 9). [c.82]

    СВЯЗЬ, а какие являются неподеленными. Неподеленные электроны (либо один, либо пара) составляют часть внешней оболочки только одного атома, а электроны, участвующие в образовании ковалентной связи между двумя атомами, являются частью внешней оболочки обоих этих атомов. Атомы элементов второго периода (В, С, Ы, О, Р) могут максимально иметь восемь валентных электронов] обычно так и происходит, хотя известны случаи, когда число валентных электронов у элемента второго периода равно шести или семи. В тех случаях, когда возможно построение структур обоих типов, т. е. с шестью или семью электронами вокруг атома второго периода, с одной стороны, и с октетом электронов — с другой, реализуются последние структуры, так как обычно они имеют более низкую энергию. Например, этилен имеет структуру [c.27]

    В соответствии с методом ВС валентность атома равна числу его одиночных электронов. С этой позиции валентности атомов элементов второго периода системы элементов Д. И." Менделеева объясняют следующим образом. Первый энергетический уровень заполнен (1х ) и не может внести вклад в валентность атома. Ответственными за образование химических связей у атомов этих элементов являются электроны второго (внешнего) уровня  [c.48]

    Из спиновой теории валентности вытекает, что образовать ковалентную связь способны только неспаренные электроны. Они и определяют число связей данного атома с другими, а следовательно, и валентность [10, стр. 158]. Рассмотрим валентность элементов второго периода системы элементов, пользуясь табл. 7. [c.90]

    В атоме следующего за цинком галлия начинается заполнение 4р-состояния, которое заканчивается в криптоне (2=36) Кг (1) (2) (3) (4s)2(4p) . Таким образом, третий период (Na—Аг) имеет, как и второй, восемь элементов, а четвертый (К—Кг), — восемнадцать. В атомах от S до Си происходит заполнение Зс -оболочки. Атомы с незаполненными оболочками обладают многими общими чертами. Как указывалось, З -оболочка имеет десять мест. При ее незаполненности, т. е. наличии большого числа свободных мест, появляется возможность различного расположения электронов внутри оболочки, и следовательно, возможность изменения валентности. Наибольшая валентность (7) проявляется у марганца, в атоме которого имеется пять З -электронов. При этом все Зс -электроны занимают пять различных -состояний с ненасыщенными спинами, а один из 45-электронов переходит в 4р-состояние. [c.317]

    Для элементов, родственных представленным, электронные конфигурации те же, за исключением более высоких значений квантового числа п. Так, сера, родственная кислороду, входящая во второй период, имеет конфигурацию валентных электронов Зз Зр.  [c.117]

    На валентный электрон в атомах элементов группы 1А (Е1, К, Се) действует эффективный заряд ядра приблизительно одинаковой величины. В случае лития этот заряд несколько меньше, чем для остальных элементов группы 1А, главным образом из-за того, что предшествующий валентному энергетический уровень занят всего двумя электронами. Эта особенность характерна и для других элементов второго периода и отличает их от других элементов соответствующих групп. Обращает на себя внимание большое отличие величин 2эфф для Е и Р, принадлежащих ко второму периоду. Это отличие показывает, насколько слабо экранирование электронами, находящимися на том же энергетическом уровне, что и рассматриваемый электрон именно это обстоятельство и приводит к уменьшению размеров атомов при переходе слева направо вдоль одного периода. [c.97]

    Группы нумеруются двояко группы - и р-элементов римскими числами с литерой А , а -элементов — с литерой В . Номер группы соответствует числу внешних или валентных электронов в атоме. Элементы /-типа—лантаноиды (58—71) и актиноиды (90—103)—характеризуются переменной валентностью, первые от двух до четырех, а вторые — от двух до семи (недавно в СССР получены семивалентные соединения нептуния и плутония). Они представля10т два семейства и не отнесены к каким-либо группам. Элементы групп кобальта и никеля, проявляющие валентность от двух до шести, но не выше, включены условно в УИ1В-группу, хотя для этого нет убедительных оснований. Их иногда, вместе с элементами группы железа, называют триадами, так как в каждом периоде (4-, 5- и [c.81]

    Самый внещний электрон в атоме каждого элемента третьего периода связан менее прочно, чем самый внешний электрон в атоме соответствующего элемента-аналога из предшествующего периода, потому что электроны с п = Ъ находятся дальше от ядра, чем электроны с п = 2. Вследствие этого первая энергия ионизации для элементов третьего периода (с валентными электронами на уровне п = 3) оказывается меньше, чем у соответствующих элементов второго периода (с п = 2). Когда завершается заполнение 35- и Зр-орбиталей, снова образуется чрезвычайно устойчивая электронная конфигурация благородного газа аргона, Аг. [c.396]

    Бор, углерод и азот принадлежат к числу элементов второго периода и имеют сходные размеры. Они отличаются по числу валентных электронов бор обладает тремя валентными электронами, углерод-четырьмя, а азот-пятью. Кремний - элемент третьего периода.-попобно углероду, имеет четыре валентных электрона, но они находятся на один главный энергетический уровень дальше от ядра и характеризуются главным квантовым числом 3, а не 2. Под своими валентными электронами [c.270]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

    Эта тенденция также ослш евагт при увеличении номера периода. Электроотрицательности у лития и у бериллия (второй период) отличаются сильнее, чем у натрия и магния (третий период). Электроотрицательности у фтора и у хлора (второй и третий периоды) отличаются сильнее, чем у хлора и у брома (третий и четвертый периоды). Следует отметить, чю атомы инертных газов имеют полностью заполненный валентный з ровень, поэтому они не проявляют тенденции оттягивать на себя электроны. Таким образом, сказанное вьипе относится к элементам групп с 1 по 7, но не относится к элементам восьмой группы. Если теперь посмотреть внимательно на расположение элементов в Периодической системе, то станет ясно, почему именно фтор и еет самую высокую электроотрицательность. Огносительная электроотрицатсльиость некоторых химических элементов представлена в ряду на форзаце. [c.52]

    Направленность ковалентной связи. Как указано выше, ковалентная связь имеет направленность. Квантовомеханическое объяснение направ.1енности ковалентной связи основано на учете формы различных орбиталей. Здесь отметим, что атомы элементов второго и последующих периодов можно рассматривать как состоящие из остова, содержащего внутренние электронные слои, и внешних (валентных) электронов, которые вносят основной вклад в образование химической связи. Поэтому далее при описании строения молекул принимаем во внимание только орбитали валентных электронов. [c.90]

    Мы уже обсуждали (гл. 6) факторы, определяющие форму неорга нических молекул, составленных из атомов переходных элементов. Главным образом это — размер и заряд центрального иона, наличие свободной электронной пары, возможность расширения валентного уровня сверхоктета, являющегося предельным для элементов второго периода, способность к образованию л -связей. стерические требования к группам, связанным с центральным атомом, и, вероятно, важнее всего принцип запрета Паули. Если рассматривать центральный атом со сферической симметрией, характерной для комплексов металлов, не имеющих свободных электронных пар, следует ожидать, и это действительно обнаруживается, правильные формы. Молекулы с координационными числами 2, 3, 4, 5, 6, 7 и 8 характеризуются следующими структура, чи линейной, треугольной, правильной тетраэдрической, тригональной бипирамидой, октаэдрической, пятиугольной бипирамидой и квадратной (архимедовой) антипризмой. Можно сказать, что всякий раз, когда электронный уровень атома переходного элемента, не принимающий участия в связи, будет иметь сферическую симметрию, структура таких комплексов будет правильной, определяемой только координационным числом. Можно вы писать электронные конфигурации, которые приводят к правильным симметричным комплексам. Для наиболее распространенных координационных чисел 6 и 4 имеют место следующие конфигу рации  [c.282]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Валентный уровень элементов второго периода заполняется четырьмя электронными парами, поэтому для их соединений АХ4, АХзЕ, АХ2Е2 угол связи существенно не отклоняется от значений 109,5°. [c.112]

    Кислород — элемент с порядковым номером 8, его относительная атомная масса 15,999ж1 . Находится во втором периоде, в главной подгруппе VI группы. Электронное строение атома кислорода и его валентные возможности рассмотрены выше. [c.355]

    Вор входит в главную подгруппу III группы периодической системы элементов и имеет электронную конфигурацию ls 2s 2p под ним расположен алюминий. Во втором периоде при переходе от бора к углероду радиусы ромов уменьшаются, а в IV группе при переходе от углерода к кремнию — увеличиваются. Поэтому радиусы атомов бора и кремния близки. Бор существенно отличается от алюминия и обнаруживает большое сходство с кремнием. Бор образует три ковалентные связи с атомами других элементов. В зависимости от природы последних атом бора может образовать еще одну до-норноакцепторную связь, предоставляя р-орбиталь для электронной пары другого атома. Таким образом, бор в соединениях проявляет валентность, равную трем, или ковалентность, равную четырем. [c.368]

    Установлено [liebmanJ. F.,J. hem. Edu ., 50, 831(1973)], что сумма первых потенциалов ионизации для непереходных элементов любого периода, у которых общее число валентных электронов равно восьми, поразительно мало изменяется в пределах периода. Например, для второго периода  [c.107]


Смотреть страницы где упоминается термин Валентные электроны второго периода элементы: [c.56]    [c.73]    [c.316]    [c.445]    [c.530]    [c.226]    [c.27]    [c.138]    [c.96]    [c.179]    [c.93]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

Второго периода элементы

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте