Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Травление интегральных схем ионное

    Большое число применений фоторезистов кратко описано в разд. 8.5. Одно из важнейших приложений они находят в производстве электронных интегральных схем, где резисты используются для обозначения участков нанесения покрытия на кремниевой подложке, на которых в последующем образуются сопротивления, конденсаторы, диоды и транзисторы готовой схемы, а также металлические проводники, соединяющие между собой элементы, изолирующие и пассивирующие слои. В процессе производства сложной схемы может быть несколько десятков стадий переноса изображения, травления, легирования или других операций. Каждая стадия должна выполняться в пространстве с точностью не хуже сотен нанометров. Для получения необходимой точности используются фотографические методы, хотя УФ-излучение может быть дополнено более коротковолновыми рентгеновскими лучами, пучками электронов или ионов в случае необходимости размещения большого числа компонентов в малом пространстве. Применяемые в настоящее время фоторезисты в основном построены на полимерных системах. Те, которые используются в полупроводниковой промышленности, представляют собой улучшенные варианты фоторезистов для приготовления фотопластинок. В этом разделе будут описаны три типичные системы фоторезистов. [c.256]


    Вакуумные технологии стали определяющими во всем цикле изготовления интегральных схем (ИС). Получение сверхчистых металлов и полупроводниковых материалов, выращивание ленточных монокристаллов, молекулярно-лучевая эпитаксия, получение тонких пленок полупроводниковых материалов и металлов, ионно-плазменное и плазмохимическое травление рабочих материалов, ионная имплантация, радиационная обработка, электронная и ионная литография и другие -далеко не полный перечень вакуумных процессов в технологии производства ИС. Из примерно 200 операций современной технологии изготовления сверхбольших интегральных схем (СБИС) 160 осуществляют в вакууме. [c.10]

    Ряд перфторированных веществ чрезвычайно стойки к действию кислорода, элементного фтора и других агрессивных веществ, устойчивы при температурах даже выше 400 °С. Все это является предпосылками для их широкого применения в качестве теплоносителей, мономеров, красителей, фоторезистов, антиоксидантов, светостабилизаторов, лекарственных препаратов, детергентов. Они используются в качестве смазочных материалов и герметиков в вакуумной технике, в аэрокосмической и холодильной технике, легкой и пищевой промышленности, радиоэлектронике (в современной технологии изготовления интегральных схем для микроэлектроники, процессах газоразрядного плазмохимического травления, ионной имплантации, очистки поверхности подложек и т.п.). [c.15]

    ДТА — дифференциально - термический анализ ИС — интегральные схемы ИХТ — ионно-химическое травление [c.5]

    Специальные газы (различные газообразные соединения) используют в производстве интегральных схем для выращивания полупроводниковых кристаллов, получения пленок, легирования, травления, эпитаксии, ионной имплантации, химического осаждения из паровой фазы и др. [c.133]

    На базе разработанных вакуумно-технологических процессов и оборудования для нанесения и травления слоев, ионной имплантации, электронной литографии и новейшей вакуумной техники в 1985 г. была создана первая в стране интегрированная автоматическая линия, предназначенная для изготовления сверхбольших интегральных схем запоминающих устройств на ЦМД. Это был поистине революционный скачок в развитии технологии и техники микроэлектроники. Только через много лет после этого в мировой практике появились установки-кластеры аналогичного назначения. [c.12]

    Процесс изготовления микроаналитических систем базируется на технологиях, использующихся при производстве интегральных схем (чипов). В их основе лежат хорошо изученные и отработанные на практике процессы фотолитографии и травления либо в растворах, либо в газовой фазе (например, реакционное ионное травление). На рис. 15.2-1 представлен типичный процесс изготовления устройства с системой микроканалов. Подложку, обычно из кремния, стекла или кварца (в принципе, возможно использование полимеров), покрьшают пленкой металла (обычно хром или золото с тонким слоем хрома для улучшения адгезии) и слоем фоторезиста. Затем с использованием фотошаблона, на котором нанесен рисунок будущего микроустройства, поверхность подвергают действию УФ-излучения. После соответствующей химической обработки (проявления) пленка фоторезиста удаляется с участков, подвергнутых экспозиции. Пленка металла, не защищенная фоторезистом, удаляется в травильных ваннах. Затем, на второй стадии травления травится и сама подложка (обычно в НГ/НКОз или КОН). В зависимости от выбранного травителя и типа подложки получающиеся микроканалы имеют различный профиль. Стеклянные и другие аморфные подложки обычно изотропны по свойствам и травятся с одинаковыми скоростями в любом выбранном направлении. Протравленные каналы, как правило, имеют скругленные кромки. На монокристаллических кремниевых или кварцевых подложках в присутствии подходя1цих травителей возможно анизотропное травление, приводящее к получению каналов со специфичными профилями, зависящими от расположения кристаллографических плоскостей, подвергнутых травлению. На заключительной стадии процесса по- [c.642]



Новое в технологии соединений фтора (1984) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Интегральные

Ионное травление

Травление



© 2025 chem21.info Реклама на сайте