Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная имплантация

    Метод ионной имплантации (ионного легирования) заключается во введении легирующих элементов в поверхностные слои металлов путем использования ионных пучков. Легированный слой формируется при бомбардировке поверхности металлов ионами легирующих элементов, приобретающих высокие скорости в электрическом поле. Толщина этого слоя зависит в основном от природы и энергии ионов, а также от природы металла, на который наносится слой. [c.129]


    Такая система покрытий обеспечивает защиту стальной основы от водородного охрупчивания и коррозии и изнашивания гидро- или газоабразивным потоком. Двухслойное покрытие с наружным слоем, состоящим в основном из окиси алюминия, можно получать последовательным плазменным напылением с плавным переходом от А1 к А12 О3 или окислением части нанесенного алюминиевого покрытия. При этом окисление можно проводить твердым анодированием, анодным оксидированием, ионной имплантацией, окислением в тлеющем разряде и другими методами. [c.111]

    При сравнении электрохимического поведения сплавов системы Ре-Сг, полученных объемным легированием и ионной имплантацией, установлено соответствие между дозами ионного легирования хромом и содержанием хрома в железе и показано, что доза 5 10 ион/см при ионном легировании железа хромом соответствует электрохимическому поведению объемно-легированного сплава с 4,9 % Сг, а доза 2 10 ион/см - поведению сплавов, содержащих более 13 % Сг. [c.74]

    Ионная имплантация свинца, который в нормальных условиях совершенно нерастворим в железе, не вносит существенных качественных изменений в характер поляризационных кривых для образцов как с низкой (5 Ю " ион/см ), так и с высокой (2 10 ион/см ) дозой имплантированного свинца по сравнению с чистым железом, однако приводит к количественным различиям между ними. Это различие связано с заметным торможением реакции выделения водорода на железе (Ь 10 и [c.75]

    Анализ экспериментальных данных показывает, что свойства легирующих элементов передаются поверхностным слоям сталей и сплавов при комплексном их легировании методом ионной имплантации. [c.75]

    Отмечено отличие и в распределении легирующих элементов для двойных и тройных поверхностно-легированных сплавов. Например, при совместной ионной имплантации хрома и никеля при дозах легирования от 10 до 10 ион/см энергии 50 кэВ и температуре 453 К на кривой распределения хрома наблюдается только один максимум на глубине 50 нм от поверхности, а для никеля на глубине 30 нм. Для поверхностно-легированного в тех же условиях двойного сплава на кривой распределения хрома имеются два максимума непосредственно у поверхности и на глубине 50 нм. [c.76]

    Одной из областей применения метода является обеспечение противокоррозионной защиты металла. С помощью ионной имплантации легко создавать в поверхностных слоях металла коррозионно-стойкие сплавы, которые никакими другими способами получить нельзя из-за нерастворимости компонентов друг в друге. Эта возможность объясняется механизмом ионной имплантации. [c.130]


    Ионная имплантация. М. Металлургия, 1985. 391 с. [c.310]

    ИОННАЯ АТМОСФЕРА, см. Дебая - Хюккеля теория. ИОННАЯ ИМПЛАНТАЦИЯ, см. Легирование. [c.257]

    От всех выше приведенных методов отличается способ ионной имплантации, суть к-рого заключается в том, что пов-сть металла (или полупроводника) бомбардируют в [c.581]

    Ряд перфторированных веществ чрезвычайно стойки к действию кислорода, элементного фтора и других агрессивных веществ, устойчивы при температурах даже выше 400 °С. Все это является предпосылками для их широкого применения в качестве теплоносителей, мономеров, красителей, фоторезистов, антиоксидантов, светостабилизаторов, лекарственных препаратов, детергентов. Они используются в качестве смазочных материалов и герметиков в вакуумной технике, в аэрокосмической и холодильной технике, легкой и пищевой промышленности, радиоэлектронике (в современной технологии изготовления интегральных схем для микроэлектроники, процессах газоразрядного плазмохимического травления, ионной имплантации, очистки поверхности подложек и т.п.). [c.15]

    За годы, прошедшие со времени принятия Программы КПСС, выли достигнуты большие успехи в деле химизации народного хозяйства. Созданы новые материалы с разнообразными функциями, в том числе жаростойкие, керамические, сверхтвердые и конструкционные, материалы для квантовой электроники и космической техники. Разработаны новые процессы получения сверхчистых, тугоплавких металлов и сплавов. Новые методы подготовки рудного сырья к переделу позволили существенно интенсифицировать металлургические процессы. Широкое использование экстремальных воздействий, включая крайне низкие и сверхвысокие температуры и давления, ультразвук, электрические, магнитные и акустические поля, радиацию и ионную имплантацию, лазерные излучения и ударные волны, позволили разработать принципиально новые технологические процессы и материалы (например, искусственные алмазы, специальные стали и сплавы, разнообразные композиты). [c.9]

    Поверхностная обработка может существенно повысить прочность материала (эффект Роско). Например, ионная имплантация азота на поверхности стали в 30 раз повышает стойкость слоя к истиранию. Достаточно широко используется процесс поверхностного упрочнения стекол путем ионного обмена (для авиа-и автомобилестроения). [c.51]

    Найден особый тип И., в к-рых отсутствует трансляционная симметрия кристалла, поскольку существует ось симметрии 5-го порядка. Эти соед. наз. квазикристаллич. (см. Квазикристалл), или икосаэдрическими. Впервые такое соед. было получено как метастабильная фаза в системе А1-Мп при содержании ок 16 ат.% Мп в условиях закалки из жидкого состояния. Для ряда сплавов в области концентраций, где образуются И, в условиях большой скорости охлаждения расплава пол>т)ают метастабильные аморфные фазы, или металлич. стекла (напр., в системах Си-7г, №-Т1). Аморфные И. возможно получить также при конденсации из пара, сильной деформацией смеси порошков, при ионной имплантации или путем радиац. воздействия на И. [c.247]

    Метод имеет ряд преимуществ. Он обеспечивает возможность введения любой легирующей добавки в любой металл, точного регулирования толщины легированного слоя, строгой дозировки добавки и контроля ее чистоты, использования унифицированного оборудования для создания ионных пучков и автоматизации процесса имплантации. К достоинствам относится низкая рабочая температура процесса. К недостаткам метода следует отнести сложность и высокую стоимость оборудования для проведения ионной имплантации, а также сравнительно малую толщину легированного слоя, не превышающую 1 мкм. Однако преимущества метода в большинстве случаев искупают недостатки, и метод ионной имплантации все чаще используется для модификации поверхностных слоев металла для улучшения их физико-химических свойств, в частности для повышения коррозионной стойкости. [c.129]

    Ионная имплантация — процесс получения тонких покрытий из сплавов посредством ионной бомбардировки поверхности металла в вакууме. Такие покрытия, например из Т1, В, Сг или V, получайт специально для придания изделиям стойкости к износу и высокотемпературному окислению [2]. [c.231]

    Для решения этой задачи большое значение приобретает разработка оптимальных методов поверхностного легирования, таких, как термодиффузионная обработка, электроискровое легирование, ионная имплантация, электронно-лучевая обработка, которые позволяют обрабатывать поверхности, непосредственно соприкасающиеся с рабочими средами, расширяют возможности и эффективность использования катодных покрытий. Перспективным методом поверхностного легирования металлов и сплавов является ионная имплантация. Она позволяет регулировать толщину легированного слоя, концентрацию вводимых компонентов, их распределение по глубине за счет изменения энергии и рпзы внедрения. Толщина имплантированного слоя в зависимости от энергии может составлять от 0,1 до 3 мкм. Изменение коррозионной стойкости после ионной имплантаций происходит за счет обеспечивания пассивного состояния при имплантации металлами, разупрочнения структуры, приводящего к повышению сродства поверхности к кислороду, изменения дефект-но сти решетки. При этом важно, что для повышения защитных свойств вводимый элемент может образовывать с защищаемым металлом или сплавом метастабильный твердый раствор внедрения или замещения в широком диапазоне концентраций. [c.73]


    Ионное легирование зависит от природы легирующих элементов. Так, имплантация инертных газов практически не оказывает влияния на электрохимическое поведение основного металла, за исключением того, что процесс ионной имплантации может приводить к загрубению обраба-тьшаемой поверхности, утолщению воздушной окисной пленки на железе. [c.73]

    Помимо природы, вида и условий возбуждения св-ва К. (спектр и энергетич. выход свечения, длительность послесвечения) существенно зависят от технологии их получения, к-рая обычио включает прокаливание аморфной шихты, состоящей из оси. в-ва и активирующих добавок, прн т-рах 900-1200 °С. Для улучшения процесса кристаллизации в шихту иногда добавляют плавни (К.С1, LiF, a lj и др.). В процессе прокаливания происходит частичное замещение иоиов осн. в-ва ионами активирующих примесей. Для эюй же цели применяют ионную имплантацию, электролитич активацию, лазерные распыление и отжиг, др. методы, позволяющие получать К. при значительно более низкой т-ре. В ряде случаев синтез осуществляют в атмосфере инертных газов. Для формирования центров свечения заданной структуры и получения требующихся для практики св-в свечения в К. часто вводят помимо активатора соакти-ваторы и сенсибилизаторы. [c.535]

    Имеются экспериментальные подтверждения положительного влияния на способность железа к пассивации ионного легирования титаном и кремнием. Ионная имплантация этих элементов при дозах легирования от 0,1 до 1 10 ион/см , энергии 500 кэВ и температуре подложки от 293 до 453 К обеспечивала максимальную концентрацию имплантированного элемента на уровне 20 %. При таком содержании титана или кремния в поверхностно-легированном железе резко уменьщается плотность тока пассивации в 0,5 М растворе СН3СООН + СНзСООЫа при pH = 5,0 и температуре 298 К. С увеличением числа циклов вольтамперометрии уменьшается различие в электрохимическом поведении чистого железа и железа, поверхностно легированного этими элементами, а после 42 циклов это различие в их поведении практически отсутствует. [c.74]

    Для улучшения коррозионной стойкости титана применяют поверхностное легирование его палладием, используя для этой цели метод ионной имплантации. Было показано, что имплантация палладия в поверхностные слои титана — эффектавный способ повышения его пассивируемости и коррозионной стойкости. [c.77]

    Другим направлением проводимых исследований является изучение процессов дефектообразования при ионной имплантации пластин арсенида галлия. Прямые экспериментальные исследования с привлечением современных методов дополнялись расчетами по модельным компьютерным программам. Было изучено влияние режимов имплантации, типа и режимов постимплантационного отжига на структуру имплантированных слоев. Установлено влияние поверхности подложки на концентрацию и тип точечных дефектов, образующихся при имплантации. Показано, что в процессе активирующего отжига происходит пространственное разделение межузельных атомов и вакансий и обогащение поверхностного слоя последними. Изучены механизмы влияния дислокационной структуры подложек на характер распределения имплантированной примеси и радиационных дефектов по площади подложек. Результаты исследований представляют практический интерес при разработке процессов импланта-ционного легирования полупроводников. [c.158]

    Для получения термически неустойчивых соед., однородных смесей тонких порошков (с послед, их спеканием), для проведения р-ций в матрично-изолированном сострянии используют криогенную технику (см. криохимия). Для ионной имплантации и синтеза неустойчивых в-в применяют атомные, ионные, молекулярные или кластерные пучки. [c.215]

    П. т. основывается на создании в приповерхностном слое подложки областей с разл. типами проводимости или с разными концентрациями примеси одного вида, в совокупности образующих структуру полупроводникового прибора или интегральной схемы. Преимуществ, распространение в качестве полупроводникового материала для подложек в П. т. получил монокристаллич. Si. В ряде случаев используют сапфир, на пов-сть к-рого наращивают гетероэпитак-сиальный слой (см. Эпитаксия) кремния и- или р-типа проводимости толщиной ок. 1 мкм. Области структур создаются локальным введением в подложку примесей (посредством диффузии из газовой фазы или ионной имплантации), осуществляемым через маску (обычно из плетси SiOj), формируемую при помощи фотолитографии. Последовательно проводя процессы окисления (создание пленки SiO ), фотолитографии (образование маски) и введения примесей, можно получить легир, область любой требуемой конфигурации, а также внутри области с одним типом проводимости (уровнем концентрации примеси) создать др. область с др. типом проводимости. Наличие на одной стороне пластины выходов всех областей позволяет осуществить их коммутацию в соответствии с заданной схемой при помощи пленочных металлич. проводников, формируемых также с помощью методов фотолитографии. [c.556]

    Очищенные пластины с выращенным на них эпитаксиальным слоем 81 или без него подвергают термич. обработке, включающей окисление, диффузию примесей или ионное легирование, отжиг пластины (в том случае, если примеси вводились ионным легированием), пиролитич. осаждение тонких пленок или их химическое осаждение из газовой фазы, гегтерирование. При реализации этих процессов осуществляется формирование активных областей и др. компонентов планарных структур. Вместе с тем термич. обработка приводит к возникновению мех. напряжений в пластине, вызывает образование дефектов, перераспределение примесей в объеме пластины и в приповерхностном слое. Чтобы уменьшить отрицат. последствия, термич. обработку проводят при сравнительно невысоких т-рах (ниже 900 °С), а для ускорения процесса применяют разл. способы, напр, окисление 81 проводят не в сухой, а во влажной среде при повыш. давлении. Для введения примесей все чаще вместо диффузии применяют ионное легирование (ионную имплантацию), к-рое по сравнению с диффузией обладает рядом преимуществ - универсальностью (возможность вводить практически любые в-ва в любую подложку), высокой воспроизводимостью, возможностью управлять профилем распределения примеси и изменять концентрацию вводимых примесей в широких пределах. [c.557]

    Образец сравнения, используемый в качестве внешнего стандарта, должен быть очень сходен по составу с анализируемым образцом. Вследствие этого для приготовления образцов сравнения обычно проводят ионную имплантацию или легирование матрицы. Для исследования легированых материалов требуется всесторонний анализ образцов сравнения. Часто не хватает образцов сравнения или аналитических методов сравнения. Все эти проблемы дела- [c.363]

    Специфические свойства поверхности эффективно используются в тонкопленочной технологии получения, например, фотодиодов, интегральных магнитных элементов вычислительной техники, приемников и ИК-излучения, радиопоглощающих и радиоотражающих покрытий, тензодатчиков, преобразователей солнечной энергии и др. Для нанесения пленок используют следующие процессы диффузионное насыщение, плазменное (или иное) напыление, испарение —конденсация, электрохимическое осаждение, электрофорез, ионную имплантацию, химический транспорт. [c.53]

    Метод электризации электронными пучками позволяет четко контролировать глубину проникновения зарядов, распределение их по поверхности, осуществляя в случае необходимости нанесение рисунка зарядных пятен с большой разрешающей способностью (до 10 мкм). Поэтому этот метод, несмотря на его сложности, применяется для изготовления мембран, для записи распределения заряда на пленке, а также широко используется для изучения природы процессов захвата и релаксации носителей заряда в полимерной пленке. Электризация с помощью ионных пучков не нащла широкого применения, хотя использование такой методики возможно, тем более, что промышленность располагает установками для ионной имплантации. [c.192]

    Для синтезов все чаще применяют методы фиэ. воздействия — сверхвысокие т-ры и давления, ионизирующее излучение, ультразвук, вибрация, интенсивное световое излучение, магн. поля, ударные волны и центробежные силы. Мн. процессы проводят в условиях горения или низкотемпературной плазмы. Нередко применяют низкие и сверхнизкие т-ры, сверхглубокий вакуум, большие скорости снижения т-р при закаливании, исследуют процессы в условиях невесомости. Широкое применение находят неводные р-рители. Для получения тугоплавких соединений применяют методы спекания, реакц. спекания и хим. осаждения из газовой фазы. Хим. р-ции часто сочетают с получением волокнистых, слоистых и монокристаллич. материалов, с изготовлением электронных схем. Легирующие элементы часто вводят методом ионной имплантации. Сферич. частицы мн. оксидов со спец. св-вами получают методом золь — гель (превращая р-р соли в эоль, к-рый переводят в гель и прокаливают). [c.373]


Смотреть страницы где упоминается термин Ионная имплантация: [c.506]    [c.50]    [c.75]    [c.76]    [c.76]    [c.50]    [c.130]    [c.63]    [c.614]    [c.7]    [c.9]    [c.89]    [c.357]    [c.6]    [c.129]   
Смотреть главы в:

Кислородная коррозия оборудования химических производств -> Ионная имплантация

Физикохимия неорганических полимерных и композиционных материалов -> Ионная имплантация


Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.330 ]

Химия и технология ферритов (1983) -- [ c.194 , c.195 ]

Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.39 , c.221 ]




ПОИСК







© 2024 chem21.info Реклама на сайте