Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная литография

    Вакуумные технологии стали определяющими во всем цикле изготовления интегральных схем (ИС). Получение сверхчистых металлов и полупроводниковых материалов, выращивание ленточных монокристаллов, молекулярно-лучевая эпитаксия, получение тонких пленок полупроводниковых материалов и металлов, ионно-плазменное и плазмохимическое травление рабочих материалов, ионная имплантация, радиационная обработка, электронная и ионная литография и другие -далеко не полный перечень вакуумных процессов в технологии производства ИС. Из примерно 200 операций современной технологии изготовления сверхбольших интегральных схем (СБИС) 160 осуществляют в вакууме. [c.10]


    Ускоренные ионы, например Оа +, Ве "+, 1п +, 5п + и др. [63, 64], при прохождении через вещество могут вызвать химические реакции подобно ускоренным электронам. Однако, поскольку рассеяние ионов (с энергией 1—3 МэВ) существенно меньше рассеяния электронов, существует возможность при помощи ионной литографии достигать высоких степеней разрешения [65]. Фокусированный пучок ионов можно сканировать подобно потоку электронов, что может быть использовано для непосредственного образования структур с высокой плотностью элементов в разных полимерных материалах, например в ПММА [63]. Разрешение определяется рассеянием ионов и возникающих вторичных электронов. [c.43]

    Поскольку выбор материалов для однослойной системы существенно ограничен взаимоисключающими требованиями, дальнейшее улучшение чувствительности этих систем будет зависеть от создания новых материалов. Ограничение влияния стоячей волны при фотолитографии, эффекта близости в электронной литографии, косого профиля в рентгеновской литографии или малого пробега ионов в ионной литографии возможно только при использовании МСР [29]. Наиболее перспективными представляются двухслойные системы, хотя трехслойные системы и более универсальны, до сих пор неизвестно, будут ли высокие затраты на их создание окупаться стоимостью конечных изделий. [c.278]

    Разрешение, достигаемое на данной стадии литографического процесса, определяется параметрами экспонирующего устройства, свойствами резистов и факторами, влияющими на скорость обработки слоя резиста и образование нужного рельефа. Когда указывается разрешающая способность резиста, необходимо всегда приводить условия, в которых был образован рельеф, прежде всего ускоряющее напряжение, толщину слоя резиста, условия обработки резиста, а в некоторых случаях и последующих слоев [82], и способы измерения ширины линий. Без этих основных данных невозможно сравнивать отдельные материалы и сопоставлять результаты литографических процессов. Ниже перечислены факторы, оказывающие влияние на разрешающую способность электронной (I), рентгеновской (П) и ионной (И1) литографии. [c.241]

    На базе разработанных вакуумно-технологических процессов и оборудования для нанесения и травления слоев, ионной имплантации, электронной литографии и новейшей вакуумной техники в 1985 г. была создана первая в стране интегрированная автоматическая линия, предназначенная для изготовления сверхбольших интегральных схем запоминающих устройств на ЦМД. Это был поистине революционный скачок в развитии технологии и техники микроэлектроники. Только через много лет после этого в мировой практике появились установки-кластеры аналогичного назначения. [c.12]


    Дальнейшим шагом по пути уменьшения длины волны экспозиционного пучка (и предела разрешения) явился переход к электронной, рентгеновской и ионной литографии. Все виды литографии объединяют термином актинолитография. Прн экспонировании пучком электронов экспериментально достигнуто разрешение 0,1 мкм, а рентгеновским излучением — 0,02 мкм. Новые виды актинолитографии требуют создания, освоения и использования дорогостоящего оборудования, что приводит к большим капиталовложениям [7]. [c.13]

    Создание и исследование резистов продолжается до сих пор с целью разработки материалов с оптимальными свойствами. Получены резисты для электроно- и рентгенолитографии, разрабатываются материалы для ионной литографии (гл. VH). Решающую роль в росте производительности литографии может сыграть повышение чувствительности резистов, поэтому с целью достижения большей светочувствительности в новых разрабатываемых позитивных резистах используется термическое усиление первичных процессов в результате каталитического действия продуктов фотолиза светочувствительного компонента на гидролиз пленкообразующего полимера. Разрабатываются новые типы резистов стойкие к ИХТ, для создания чувствительных к коротковолновому УФ-свету планаризационных слоев, для создания слоев и проявления без участия растворителей (сухие резисты) (гл. VI). Очевидно, для развития микроэлектроники необходимо создавать новые резисты, выдвигая и используя перспективные идеи. Особенно важно находить эффективные фотореакции и на этой основе получать рези . тные композиции. Так, относительно недавно была обнаружена и изучена высокая светочувствительность ониевых солей органических соединений элементов пятой и шестой групп использование полученных результатов в литографии позволило ввести в обиход в качестве полимерного компонента эпоксидные смолы (гл. III). Важным материалом для литографии оказались также полиолефинсульфоны. [c.14]

    I3I0, 1314, 1316 3/1102, 1103 4/J52, 297, 421, 813 5/331, 742, 953. См. также Ианы, Масс-спектрометрия Ионные методы 1/916. См. также Ионизация дозиметрия 2/220 нитегрнроваине тока 2/1317 лазерная десорбция 5/742 литография 5/334 микроанализ 2/511, 512 3/431 отложение 2/1149, 1152 селективное детектирование 5/629 спектроскопия масс, см. Масс-спек-трометрия [c.615]

    Годы, прошедшие с момента выхода предыдуш,его издания данной монографии (имеется перевод Практическая растровая электронная микроскопия.—М. Мир, 1978), ознаменовались бурным развитием принципов электронно- и ионно-зондовой аппаратуры и методов исследования. В первую очередь сюда следует отнести создание серийных растровых оже-электронных микроанализаторов, таких, как ЛАМР-10 (фирма ЛЕОЬ), установок электронно- и ионно-лучевой литографии, метрологических и технологических растровых электронных микроскопов и т. д. Существенно улучшились параметры приборов. Так, сейчас серийные растровые электронные микроскопы с обычным вольфрамовым термокатодом обладают гарантированным разрешением 50—60 А, модели высшего класса с наиболее высокими характеристиками имеют встроенную мини-ЭВМ, с помощью которой автоматически устанавливается оптимальный режим работы прибора, существенно облегчилось и стало более удобным обращение с прибором. В ряде случаев вместо обычных паромасляных диффузионных насосов для откачки используются турбомолекулярные и ионные насосы, создающие чистый вакуум вблизи образца, за счет чего снижается скорость роста пленки углеводородных загрязнений на объекте. [c.5]

    В конце 70-х годов проводятся исследования и разработка электронно-литографического оборудования. Установка электронной проекционной литографии Вертикаль явилась первой отечественной промышленной установкой этого класса оборудования. Позднее в 80-х годах развертываются работы по исследованию и разработке оборудования ионной и рентгеновской литографии, позволяющих перейти к формированию структур СБИС с размерами элементов около 1 мкм. В это же время выполняются разработки компактного источника синхро-тронного рентгеновского излучения (СРИ) с диаметром накопительного кольца 2,2 м и 21 каналом вывода СРИ. [c.12]


Смотреть страницы где упоминается термин Ионная литография: [c.43]    [c.43]    [c.43]    [c.43]    [c.268]    [c.268]   
Смотреть главы в:

Светочувствительные полимерные материалы -> Ионная литография

Светочувствительные полимерные материалы  -> Ионная литография




ПОИСК







© 2024 chem21.info Реклама на сайте