Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс производства простых сложных продуктов

    С точки зрения организации производства большое значение имеет также количество компонентов изготовляемого продукта. По этому признаку все производственные процессы разделяются на процессы производства простых и сложных продуктов. Процесс производства простого продукта, или, как его еще называют, прямой производственный процесс ,— это такой процесс, когда в результате последовательной обработки одного и того же сырья сразу получается готовый продукт или полуфабрикат, например изготовление отдельной детали на машиностроительном заводе, производство кирпича на кирпичном [c.33]


    В качестве компонентов, содержащих активный водород, для получения полиуретановых связующих применяют простые и сложные полиэфиры, полиамиды, касторовое масло н продукты переэтерификации высыхающих масел. Касторовое масло является самым дешевым компонентом для производства полиуретанов. Перспективным направлением в этих покрытиях является использование простых полиэфиров в качестве гидроксилсодержащих компонентов. При замене сложных полиэфиров простыми из структуры полимера исключаются сравнительно малопрочные (по отношению к воде и щелочам) сложноэфирные связи, что способствует повышению химической стойкости защитного покрытия. Кроме того, процесс получения простых полиэфиров, основанный на применении окисей этилена и пропилена, в настоящее время является значительно более экономичным, чем получение сложных полиэфиров, требующее большого количества дорогостоящих двухосновных кислот (адипиновая, себациновая). [c.425]

    Для извлечения фтора из отходящих газов, образующихся при производстве комплексных и сложно-смешанных удобрений, необходимо применение более совершенных методов и приемов по сравнению с очисткой газов, например, в производстве простого суперфосфата, где фтор присутствует в высоких концентрациях. Расширение областей применения фтора (ядерная энергетика, пластмассы, моторные топлива, фреоны, стекло, керамика, цветная и черная металлургия и т. д.) ставит перед промышленностью минеральных удобрений задачу увеличения выхода фтора с единицы фосфатного сырья в полезно используемые продукты. Ниже рассматриваются конкретные технологические схемы извлечения фтористых соединений из отходящих газов производства удобрений, которые внедрены в производство или прошли полупромышленные испытания, либо являются разработками сегодняшнего дня, а затем процессы переработки кремнефтористоводородной кислоты как одного из основных продуктов, получаемых в результате абсорбционной очистки газов. [c.84]

    Развитие производства солей сернистой кислоты в ближайшее время должно пойти несколькими путями. Получение с ль-фита и бисульфита натрия из сульфата натрия известковым способом, несмотря на большую доступность сырья, не представляет промышленного интереса. Технологическая схема этого процесса на много сложнее, чем весьма простая схема получения этих продуктов из соды. Поэтому, хотя сода и является более ценным сырьем, чем сульфат натрия, содовый способ оказывается более экономичным. Он не требует больших капитальных затрат на оборудование и весьма дешев в эксплоатации. [c.362]


    Новые разработки в области использования сырья для нефтехимических процессов ведутся сейчас в следующих направлениях внедрение новых видов сырья обеспечение комплексной переработки, значительно улучшающей экономику производства получение сложных мономеров и полупродуктов из дешевых и простых видов сырья изыскание возможностей замены одних видов сырья другими, более дешевыми (например, замена бензола в производстве ряда продуктов толуолом, замена в синтезах ацетальдегида и хлорвинила ацетилена этиленом и др.) изыскание возможностей повышения эффективности процесса при использовании одного и того же вида сырья (например, переход от парофазного окисления к жидкофазному, использование кислорода вместо воздуха и т. д.). [c.11]

    Широкое развитие получают процессы прямого окисления углеводородов с целью выпуска целой гаммы важных продуктов (алифатические, терефталевая, изофталевая и другие кислоты, вторичные спирты, ангидриды кислот, оксиды олефинов, альдегиды, кетоны и др.). Сложный и многостадийный процесс производства аммиака из твердого топлива заменен более простым и эффективным, основанным на использовании природного газа. [c.14]

    В случае отсутствия данных для надежностно-экономического анализа предварительный выбор алгоритма АСЗ может быть проведен из следующих практических соображений. АСЗ с простым алгоритмом защиты применяются для мало изученных с точки зрения защиты потенциально опасных процессов химической технологии, для защиты малотоннажных периодических производств, производств с низкой стоимостью продуктов, где потери от неоптимальности алгоритма незначительны, для процессов с небольшим числом параметров защиты и защитных воздействий. АСЗ со сложным алгоритмом защиты применяются для потенциально опасных процессов с большим числом параметров защиты и защитных воздействий, если динамика нарастания (убывания) опасных параметров в предаварийных режимах исследована. [c.34]

    Поточный метод организации производства характеризуется непрерывным выпуском продукции, последовательной передачей полуфабрикатов с одной стадии переработки на другую до получения готового продукта. Этот метод обеспечивает ритмичность и синхронность производства, пропорциональность отдельных частей производственного процесса, непрерывный выпуск продукции, специализацию отдельных участков. Высокая эффективность поточного метода обусловила его внедрение не только в массовом, но и в серийном производстве. Вместе с тем следует учитывать, что пространственное размещение производства и число структурных подразделений зависят от структуры производственного процесса, которая может быть простой и сложной. [c.32]

    Простая структура характерна для прямолинейного потока (например, производство смазочных масел или бутадиена). В этом случае можно создать единое структурное подразделение по типу предметной специализации. Сложная структура характерна для производства больщинства топлив и продуктов нефтехимии, где один и тот же полуфабрикат используют по ряду направлений, а готовые продукты получают смешением в конце производственного процесса. [c.32]

    Полиэфиры гликолей (во многих случаях на основе окиси Пропилена или полимеров окиси этилена и окиси пропилена) широко применяются в производстве уретановых смол вследствие их дешевизны и хороших механических свойств получаемого поропласта. Был синтезирован ряд новых триолов — продуктов присоединения пропилепа к триметилолпропану — для испытания в уретановых поропластах [215]. Простые полиэфиры гликолей не так легко реагируют с изоцианатами, как сложные полиэфиры, так как гидроксильные группы, вводимые в виде окиси пропилепа, имеют вторичный, а не первичный характер. Поэтому требуются специальные методы и приемы для успешного использования простых полиэфиров в одноступенчатом варианте процесса. [c.210]

    Синтез красителей, ведется ли он в малых размерах в лаборатории или производится в больших заводских установках, во всех случаях может быть разделен на отдельные процессы химической переработки менее сложных химических веществ в более сложные. Наиболее просто и обще можно представить течение этого синтеза схемой сначала превращение органического сырья в сложные соединения, не имеющие характера красителей (такие соединения мы называем промежуточными продуктами), затем превращение промежуточных продуктов в красители. Практика организации производства красителей научила уже давно, что первая стадия — получение из сырых материалов промежуточных продуктов — является вообще значительно более сложной и трудной, чем вторая — получение красителей из промежуточных продуктов, что поэтому крайне важно на эту первую стадию обратить особое внимание и подвергнуть ее специальному изучению. [c.12]


    Схемы фракционирования нефти в сложных колоннах с боковыми отборами довольно широко исследованы для различных процессов выделения газов из растворов [17,1981, перегонки нефти [19,24,33,78,156.192,195,21 1,21 2,250,287,357,37 1], разделения продуктов каталитического крекинга [22,31,39,126,199,349 , перегонки мазута [34,156,213,216,254,307,374,376,377], разделения газообразных и жидких углеводородов [42,175,176,208], получения нефтяных фракций [59,33,84,293,295,335,347, 358,367], ректификации прямогонного бензина [1 11,127,193,194,326,337,340-342,382 , ректификации синтетических высших жирных спиртов [200], производства жидких парафинов [202,222,304,350], получения электрографической жидкости [205], производства судового топлива [230], получения печного топлива [282], разделения углеводородных газов [301,351,375] и других раз личных смесей [152,185,241,338,339,3 86,41 1, 413,428]. Они являются наиболее простыми из сложных колонн и часто встречаются в промышленности. В го же время во многих процессах переработки нефти они не нашли применения. В литературе приводится только единичные примеры работы колонны с боковой укрепляющей секцией [233]. Кроме того, актуальной проблемой является разработка сложных колонн с боковыми отборами, требующих минимальных капиталовложений при реконструкции действующих установок [100,1 07,1 19,123, 153,335). [c.25]

    Срок службы катализатора в промышленном реакторе — один из параметров, который особенно сложно оценить в лабораторных условиях. Это связано с тем, что снижение каталитической активности вызывается многими факторами, которые недостаточно установлены. Так, закоксовывание поверхности контактных масс, химическое отравление, рекристаллизация, закупорка пор и другие процессы дезактивации [9, 39, 40] могут происходить по-разному в лабораторном реакторе и в промышленности. Срок службы катализатора может быть выражен 1) в единицах времени, например в секундах для катализаторов крекинга и в годах для катализаторов синтеза аммиака 2) промежутком времени между регенерациями или общей продолжительностью работы до полной потери активности 3) массой продукта, полученного за все время службы катализатора. Срок полезной службы катализатора гораздо короче отрезка времени до полной потери активности. Иногда выгодней заменить катализатор, активность которого упала до определенного уровня, на свежий, нежели продолжать эксплуатацию старого , о зависит от многих экономических факторов. На рис. 2.1 представлена экономичность службы катализатора в крупнотоннажном химическом производстве [2]. При создании нового катализатора или модификации имеющегося с целью повышения срока службы следует учитывать такие обстоятельства 1) простой при замене катализатора 2) размеры промышленного реактора 3) стоимость замены катализатора 4) потери, связанные со снижением производственной мощности и 5) сложность приготовления высокоэффективного катализатора. [c.51]

    В многотоннажных производствах основного органического, синтеза применяются, как правило, непрерывные процессы с ограниченным числом стадий. Производства тонкого органического, синтеза обычно меньше по масштабу, в них применяются многостадийные процессы, осуществляемые чаще всего в аппаратуре периодического действия. Особенностями промышленности тонкого органического синтеза является также необходимость применения исходных индивидуальных веществ высокой чистоты и возможность получения разнообразных конечных продуктов сложного состава из сравнительно немногих продуктов более простой химической переработки—так называемых полупродуктов. Поэтому структура ряда отраслей тонкого органического синтеза (например, производства красителей, многих лекарственных, [c.121]

    Накопление в реагирующей системе активных продуктов или тепла может приводить к колебательному протеканию реакции во времени. При этом условия устойчивости становятся сложнее, чем в простых случаях, рассмотренных выше. Наряду с простой непериодической неустойчивостью, с которой мы имели дело до сих пор, становится возможной также и колебательная неустойчивость, т. е. самовозбуждение колебаний. Химические колебания имеют важное значение для ряда вопросов науки и техники. Так, одной из основных особенностей живого организма является наличие биологических ритмов, которые могут быть связаны с периодическими химическими процессами. С другой стороны, возникновение самовозбуждающихся колебаний при техническом осуществлении экзотермического химического процесса может привести к опасным разогревам и, следовательно, химик-технолог должен уметь взять такие колебания под свой контроль. Эти вопросы привлекают большой интерес в последнее время в связи с проблемой автоматизации химических производств. Тем самым возникает связь химической технологии с теорией автоматического регулирования и ее основой — теорией колебаний [1]. [c.430]

    Проблеме производства синтез-газа для химической поо-мышленности посвящено большое число обзоров, монографий и статей [41—43]. Синтез-газ находит широкое применение для производства метанола и других спиртов, альдегидов, кетонов, простых и сложных эфиров, парафиновых, олефиновых и ароматических углеводородов. Кроме того, процесс газификации угля позволяет получать водород, необходимый для синтеза аммиака, в процессах гидрогенизации угля, гидрокрекинга вакуумного дистиллята нефти. Упрощенная схема переработки синтез-газа в ценные промежуточные и целевые продукты приведена на рис. 1.1. [c.21]

    В решении задач, поставленных перед химической наукой и промышленностью XXI съездом КПСС, немаловажная роль принадлежит хроматографическому методу. Являясь очень тонким методом научного исследования, хроматография в то же время дает исключительно продуктивный выход в практику, в промышленность, позволяя осуществлять, с одной стороны, процессы разделения сложных смесей веществ, очистку продуктов, выделение ценных компонентов, с другой стороны, производить контроль производства, тонкий анализ, и во многих случаях заменять сложные приемы качественного и количественного анализа быстрыми и простыми хроматографическими экспресс-методами. [c.3]

    Современное химическое предприятие характеризуется большими масштабами производства, сложной взаимосвязью различных процессов переработки сырья, необходимостью поддерживать режимы работы сложных агрегатов в узком диапазоне функционирования. Поэтому контроль за работой и регулирование отдельных аппаратов производства и целых групп оборудования, цехов или предприятий в настоящее время являются не просто экономически оправданными, но и необходимыми для получения продукта заданного-качества. [c.87]

    Процессы гидролиза, гидратации, дегидратации, этерификации и амидирования имеют очень важное значение в промышленности основного органического и нефтехимического синтеза. Гидролизом жиров, целлюлозы и углеводов давно получают мыло, глицерин, этанол и другие ценные продукты. В области органического синтеза рассматриваемые процессы используют главным образом для производства спиртов Сг—С , фенолов, простых эфиров, а-оксидов, многих ненасыщенных соединений, карбоновых кислот и их производных (сложных эфиров, ангидридов, нитрилов, амидов) и других соединений. [c.159]

    Человек использовал биотехнологию многие тысячи лет люди занимались пивоварением, пекли хлеб. Они придумали способы хранения и переработки продуктов путем ферментации (производство сыра, уксуса, соевого соуса), научились делать мыло из жиров, изготавливать простейшие лекарства и перерабатывать отходы. Однако только разработка методов генетической инженерии, основанных на создании рекомбинантных ДНК (гл. 7), привела к тому биотехнологическому буму , свидетелями которого мы являемся. Эти методы не только открывают возможности улучшения уже освоенных процессов и продуктов, но и дают нам совершенно оригинальные способы получения новых, ранее недоступных веществ, позволяют осуществлять новые процессы. Сама история этой науки — генетической инженерии — яркий пример того, как сложно прогнозировать внедрение в практику достижений фундаментальных наук. Разработка технологии рекомбинантных ДНК—результат значительных вложений в развитие молекулярной биологии за последние сорок с лишним лет. А ведь не так давно, в конце 60-х годов, многие биологи сетовали, что слишком уж много внимания уделяется этой престижной области биологии и химии, которая не дает ничего полезного. Сегодня нам ясно, что открытия молекулярной биологии глубоко скажутся на судьбе /человечества. [c.9]

    Очевидно, ценность сетевого планирования наиболее велика при решении сложных задач. И хотя это утверждение справедливо в том смысле, что для осуществления простых работ не требуется столь тонко разработанная методика, тем не менее важно постоянно иметь в виду, что сетевые графики могут быть как угодно просты или как угодно сложны и что часто полезно начинать с построения простой сетевой модели и постепенно усложнять ее. Так, например, уже на раннем этапе разработки процесса можно задаться вопросом, как скоро новый продукт может поступить в продажу. Простая модель, вроде помещенной на рис. 7.2, показывает, что если не удастся ка-ким-нибудь образом сократить объем работы, то с момента начала лабораторных исследований данного процесса до пуска производства в эксплуатацию, по-видимому, пройдет 63 месяца. Впоследствии можно будет отработать каждый этап с такой степенью детализации, которая потребуется для планирования работы и контроля ее выполнения. [c.246]

    Установки, которые мы называем опытно-промышленными, в разных организациях называются по-разному. Под опытно-промышленной установкой мы подразумеваем систему, которая по своим размерам занимает промежуточное место между лабораторной установкой и крупным промышленным производством на ней могут осуществляться некоторые или все стадии производственного процесса. Одни опытно-промышленные установки сравнительно просты и оснащены немногочисленными приборами, другие же имеют множество сложных контуров регулирования и могут быть подключены к вычислительной машине. Одни из них создаются в лаборатории и по своим задачам и целям не на много превосходят лабораторные установки, тогда как другие сооружаются на заводе и являются самостоятельным действующим производством. Стоимость опытно-промышленной установки может варьироваться от нескольких тысяч до сотен тысяч фунтов стерлингов. Основополагающая задача опыт-но-промышленной установки — облегчить принятие решения о том, следует ли производить продукт с помощью данного процесса, а в случае положительного решения — содействовать проектированию соответствующего производства и управлению им. Многие неполадки, с которыми приходится сталкиваться впоследствии на действующих промышленных производствах, коренятся в близоруком представлении о самодовлеющей ценности опытно-промышленной установки. [c.254]

    Для производства продуктов органического синтеза используются типичные реакции органической химии галогенирование, сульфирование, окисление и восстановление, гидрирование и дегидрирование, гидратация и дегидратация, нитрование, алкилирование, циклизация, изомеризация, конденсация, полимеризация, этерификация и т. п. Промышленность органического синтеза базируется в основном на реакциях синтеза, т. е. получение сложных веществ из простых, но в производствах органического синтеза используются и реакции разложения. Деление процессов органического синтеза и название их по видам реакций оправданы тем, что многие из них идут в кинетической области, т. е. общая скорость процесса и определяется скоростью химической реакции (см. главу IV) и вычисляется по уравнению [c.500]

    При автоматизации производства взрывчатых веществ и выборе соответствующих контролирующих приборов необходимо учитывать взрывоопасность производства и коррозионную способность реагентов. Кроме того, такие основные процессы (к тому же наиболее нуждающиеся в автоматизации), как нитрование, для контроля довольно сложны, поскольку они включают, помимо наблюдения за температурой, определение составов кислотной смеси и нитруемого продукта. Поэтому первым шагом в направлении полной автоматизации должна быть автоматизация отдельных процессов, создающая предпосылки для общей автоматизации. Наиболее просто решается вопрос автоматического, контроля и регулирования температуры. [c.131]

    Перспективными являются также процессы окислительного хлорирования с использованием в качестве исходного сырья парафиновых углеводородов, в частности этана. Широкое развитие получают процессы прямого окисления углеводородов с целью выпуска целой гаммы важных продуктов (карбоновые, терефтале-вая, изофталевая и другие кислоты, вторичные спирты, ангидриды кислот, окиси олефпнов, акролеин, альдегиды, кетоны и др.). Сложный многостадийный процесс производства аммиака из твердого топлива заменен более простым и эффективным, основанным на использовании природного газа. [c.10]

    На рис. 9-8 представлены сравнительные данные по слеживаемости в рассыпчатости карбоаммофоса и тукосмеси карбамида и аммофоса с одинаковым соотношением питательных вещ.еств. Тукосмесь значительно менее гигроскопична и примерно в 10 раз меньше слеживается, чем карбоаммофос. Аналогичные данные наблюдаются и для удобрений типа нитроаммофоски и нитрофоски. Производство тукосмесей экономически более выгодно, чем производство сложных удобрений. Это связано, во-первых, с более высокой гигроскопичностью сложных удобрений по сравнению с односторонними, поэтому для высушивания последних в процессе производства требуются меньшие энергетические затраты. Во-вторых, модифицирования фосфорных односторонних удобреиий не требуется вообще, а для аммиачной селитры, карбамида и хлорида калия модифицирующих добавок требуется в 5—10 раз меньше, чем для сложных удобрений (в расчете на тонну продукта). В соответствии с этим расходы на модифицирование существенно снижаются. Таким образом, широкое внедрение сухого тукосмешения на основе аммофоса, простого и двойного суперфосфата, аммиачной селитры или карбамида и хлорида калия имеет большие экономические и агрохимические преимущества. [c.240]

    Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья, состоявшей в выделении ценных веществ (сахар, масла) или их расщеплении (мыло, сиирт и др.). Органический синтез, т. с. получение болсс сложных веществ нз сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали и.грать нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять главных групп исходных аеществ для синтеза многих тысяч других соединений  [c.8]

    Для выделения из продуктов каталитического риформинга одного ароматического углеводорода с высокой концентрацией его в сырье (выше 80%) следует выбрать перегонку с третьим компонентом. В качестве третьего компонента могут быть выбраны растворители, используемые при экстракции, например N-метилпирролидон и N-формилморфолин. При одновременном выделении двух или более ароматических углеводородов (например, бензола, толуола и ксилола) перегонка с третьим компонентом нерациональна, так как при этом требуется сложное предварительное фракционирование сырья и для выделения каждого ароматического углеводорода из узкой фракции необходима самостоятельная колонна перегонки. В этом случае наиболее простая технологическая схема получается при использовании экстракции. Отборы ароматических углеводородов при экстракции выше, чем при перегонке с третьим компонентом. Другой путь производства ароматических углеводородов — проведение процесса риформинга в таких условиях, которые позволили бы затем ректификацией выделить ароматический углеводород нужной чистоты (см. гл. 1). Это направление наиболее целесообразно при получении ксилола и, возможно, толуола. Бензол чистотой 99,9% и с высоким отбором в этих условиях получить, по-видимому, невозможно. и его, как правило, выделяют из продуктов каталитического риформинга методом экстракции.  [c.70]

    Дегидрирование циклогексаиола, циклогексанона и их производных. Каталитическое дегидрирование циклогексаиола или его смесей является завершающей стадией производства фенола в циклогексановом процессе. Несмотря на кажущуюся простоту и изученность процесса (дегидрирование циклогексаиола над никелевым катализатором при 360 °С описано Падоа и Фабрисом еще в 1908 г.), внедрение его в промышленность сопряжено с рядом трудностей. Основная трудность заключается в необходимости проводить реакцию с высокой степенью превращения исходных веществ, поскольку циклогексанон и фенол образуют азеотропную смесь, содержащую 76% фенола. Уменьшение концентрации фенола в продуктах дегидрирования ниже указанной величины потребует вместо простой ректификации сложных и дорогостоящих способов его выделения. Однако увеличение глубины превращения связано с применением достаточно высоких температур. Согласно термодинамическим расчетам, дегидрирование целесообразно проводить при температурах выше 320°С. [c.280]

    Применение. Серная кислота относится к продуктам основного химического производства. Ее используют в производстве химических волокон (вискозные шелка, шерсть, полиамидные волокна), удобрений (суперфосфат), взрывчатых веществ, моющих, смачивающих и эмульгирующих средств, красителей, лекарственных препаратов, а также различных сульфатов, простых и сложных эфиров, некоторых кислот (фтороводородная кислота, пиииая кислота и др.), для рафинирования минеральных масел, при травлении металлов, как компонент различных гальванических электролитов (для процессов хромирования, анодного окисления и др.), как электролит свщщопых аккумуляторов и для многих других целей. [c.373]

    Фактически понятие моделирование нефтеперерабатываюп1ег( производства чрезвычайно широкое. Ряд нефтеперерабатывающих заводов у ,ается вполне удовлетворительно охарактеризовать как работающих в рамках модели линейной программы для других приходится использовать нелинейные математические модели. Данная статья ограничивается рассмотрением задач второй группы. Сложность математических моделей можег изменяться от простого прямолинейного материального баланса с фиксированными выходами до весьма сложн ) х форм, при которых с помощью внутренней линейной программы выходы на отдельных технологических установках выводятся па основании зависимостей от параметров режима, предусматривается хранение промежуточных фракций и потоков, вычисляются качественные показате ли продукта и стоимость отдельных процессов, оптимизируются взаимосвязанные параметры и производится компаундирование товарных бензинов. Во многих случаях столь сложные задачи могут программироваться для решения только на самых мощных вычислительных машинах. [c.8]

    Реакция конденсации изобутилена и формальдегида проводится под давлением, в присутствии серной кислоты. Характерной особенностью метода ФИН является проведение синтеза ДМД с рециркуляцией водного слоя реакционной жидкости. В самом деле, поскольку при возврате водной фазы на синтез ДМД нет необходимости полностью рекуперировать формальдегид из продуктов реакции, процесс можно вести при сравнительно низкой конверсии формальдегида, т. е. при подаче его на синтез в избыточном количестве. Очевидно, что рецикл водного слоя является также наиболее простым способом возврата в реактор МБД, выделение которого из водного реакционного слоя,, как было показано, является весьма сложной задачей. Необходимо отметить, что рассматриваемый прием имеетеще несколько преимуществ перед проточной схемой, а именно отпадает необходимость нейтрализации катализатора — серной кислоты — который, таким образом, используется многократно, полностью ликвидируется основной поток загрязненных сточных вод производства ДМД, содержащий ВПП, соли и т. д. Правда, данная схема синтеза ДМД требует специального узла, обеспечивающего вывод из системы избыточного количества воды, которая непрерывно вводится в цикл со свежим формалином. Однако, как показали французские специалисты, эта задача может иметь хотя и несколько громоздкое, но тем не менее приемлемое решение. После [c.64]

    Как было указано ранее, при окислительном дегидрировании парафинов выход диенов значительно выше, чем при обычном дегидрировании. Другим существенным преимуществом рассматриваемого процесса является то, что в ходе реакции практически не образуется никаких побочных продуктов, за исключением СО, СО2, небольших количеств продуктов крекинга и кокса. При дегидриро-Ьании изопентана в присутствии иода не наблюдается скелетной изомеризации и образования пиперилена. Наличие следов последнего в конденсате объясняется дегидрированием к-пентана, содержащегося в исходном сырье [137]. Следы циклонентадиена обнаруживаются только при температуре выше 600—650 °С. Однако реализация процесса в промышленности возможна лишь при условии решения нескольких сложных технических задач, главной из которых является разработка простого и надежного способа извлечения и регенерации иода из продуктов реакции. Поскольку иод относится к числу дорогих и дефицитных веществ, даже небольшие его потери при производстве диенов обесценивают все преимущества данного метода. Наиболее эффективное решение этой проблемы заключается [c.149]

    Приготовление масел и консистентных смазок с присадками — процесс более сложный, чем простое добавление некоторых химикатов к базовым маслам. Как в выборе, так и в применении присадок требуются большие знания. Плохое масло нельзя превратить в первосортный продукт путем простого включения какой-либо присадки. Некоторые масла хорошо подходят для введения в них химических присадок, другие не подходят. Какое-то определенное масло может подходить для Ъдного вида присадок и не подходить для другого. Нет-готорые присадки мо1-ут улучшать одно свойство масла и в то же время ухудшать другие его свойства. В связи с этим производство нромышленных смазок требует учета многочисленных факторов, которые не сразу становятся очевидными. [c.70]

    Закон сохранения веса (массы) вещества заключается в том, что в замкнутой системе тел вес масса) веш,естаа остается постоянным, независимо от тех изменений, которые происходят с веществом в этой системе. Иначе говоря, материя не может быть создана из ничего, а также не. иожет бесследно исчезнуть. Отсюда вытекает, что количество (масса, вес) вещества в любом замкнутом цикле производства, в любом замкнутом аппарате остается постоянным. Вещество здесь может принимать только другую физическую форму (например, из газа превратиться в жидкость, твердое тело, или наоборот) или же изменить свой состав, т. е. претерпеть то нлп иное химическое превращение (например, разложиться на составные части, если это было сложное вещество, или соединиться с другим веществом, образуя тем самым новое вещество, и т. д.). Но в каждом отдельном случае количество вещества, которое входит в аппарат, должно быть равно количеству вещества, выходящему из этого аппарата. Таким образом, закон сохранения веса вещества принимает следующую простую формулировку вес исходных продуктов процесса должен быть равен весу его конечных продуктов. Это и является основой составления любого материального баланса всего процесса, или аппарата или только какой-либо его части. Следовательно, когда производится материальный подсчет, необходимо учитывать вес каждого компонента, поступающего в данный аппарат(приход), и вес каждого компонента, уходящего из аппарата (расход). При этом в результате сумма прихода компонентов должна быть равна сумме расхода их независимо от состава продуктов при поступлении и выходе, т. е. независимо от того, каким изменениям они подвергались н]1м прохождении через данный аппарат. [c.13]

    При производстве химико-фармацевтических препаратов большей частью приходится пользоваться огнеопасным и взрывоопасным сырьем взрывоопасными газами (водород, аммиак, сероводород, кетен), легко воспламеняющимися жидкостями, являющимися компонентами реакций и средами для их проведения (бензол, толуол, спирты, эфиры простые и сложные, органические кислоты и др.), пирофорными твердыми веществами, применяемыми в качестве восстановителей (цинковая пыль) и катализаторов (скелетный никелевый катализатор), а также некоторыми огневзрывоопасньгми промежуточными продуктами (диазо- и нитрозосоединеиия). Эта особенность вызывает необходимость специального взрывобезопасного оформления технологических схем производства, применения взрывобезопасных электрооборудования, освещения и сетей, заземления всего оборудования, применения паро- и газотушения, изоляции опасных процессов, взрывобезопасного оформления вентиляционных устройств в соответствии с противопожарными нормами строительного проектирования промышленных предприятий. [c.22]

    Однако высокое качество каменной соли как исходного сырья нередко создает впечатление, что производство товарной соли из нее является простым и легким делом. Технология переработки каменной соли не включает в себя сложных химических процессов, но требует создания специфического оборудования для дробления, измельчения и классификации соли, а также для фасовки и упаковки продукта. В этой области важные исследования выполнены Г. М. Безкровным и др. [32, 33, 112, 154]. [c.118]


Смотреть страницы где упоминается термин Процесс производства простых сложных продуктов: [c.34]    [c.162]    [c.68]    [c.488]    [c.28]    [c.16]    [c.151]    [c.238]    [c.235]    [c.240]   
Организация планирование и управление промышленным предприятием (1982) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Производство процесса

Простои производства

Сложные процессы



© 2025 chem21.info Реклама на сайте