Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галоген ионы, реакционная способность

    В вертикальных рядах элементов, принадлежащих к одной и той же группе, нуклеофильная реакционная способность возрастает с увеличением атомной массы. Так, из галогенов (элементы Vil группы) наибольшей нуклеофильной силой обладает иод. Несмотря на то что заряд ядра атома иода (53) намного больше, чем заряд ядра атома фтора (9), определяющие нуклео фильные свойства неподеленные пары электронов у иода находятся на большем расстоянии от ядра, и притяжение их к ядру значительно ослаблено экранирующим действием электронов заполненных внутренних оболочек. Это обусловливает большую поляризуемость внешних неподеленных пар, что облегчает взаимодействие их с атомом углерода, имеющим дефицит электронной плотности, и позволяет образовывать связь на больших межъядерных расстояниях. Таким образом, у галогенид-ионов нуклеофильная сила уменьшается п ряду  [c.101]


    При этом связь между углеродом и галогеном приобретает в известной степени характер двойной связи, ее длина укорачивается (от 1,78 до 1,72 А). Все это приводит к повыщению энергии связи С—X, уменьшению ее поляризации и понижению реакционной способности атома галогена при химических реакциях. Например, труднее протекают реакции элиминирования. В этом случае необходимо присутствие более сильных оснований вместо этилат-иона применяют амид-ион, т. е. в качестве растворителя используют не спирт, а аммиак. [c.101]

    Нуклеофильная реакционная способность ионов галогенов возрастает по мере увеличения размера ионов. Ион фтора представляет собой чрезвычайно слабый нуклеофил, и алкилфториды, как правило, нельзя получить посредством обычного нуклеофильного замещения. Первичные и вторичные спирты превращаются в хлориды обычно в присутствии хлористого цинка. Галогенид металла может способствовать удалению гидроксильной группы, действуя как кислота Льюиса он также обеспечивает высокую концентрацию ионов хлора. Проба Лукаса, которая служит для идентификации первичных, вторичных и третичных спиртов, основана на разнице в скоростях взаимодействия спиртов с крепким водным раствором соляной кислоты и хлористого цинка. Отделение слоя алкилхлорида служит наглядным доказательством характерной реакции. По реакционной способности в отношении данного реактива насыщенные спирты располагаются в следующем порядке третичные вторичные > первичные. Аллиловые и бензиловые спирты реагируют очень быстро. [c.219]

    Больщая часть перечисленных в табл. 21.4 свойств закономерно изменяется в зависимости от атомного номера элемента. В пределах каждого периода соответствующий галоген имеет почти самую высокую энергию ионизации, уступая только следующему за ним благородному газу. Точно так же каждый галоген в пределах своего периода имеет самую больщую электроотрицательность. В группе галогенов атомные и ионные радиусы увеличиваются с возрастанием атомного номера. Соответственно энергия ионизации и электроотрицательность уменьшаются в направлении от легких к тяжелым галогенам. При обычных условиях галогены существуют, как уже сказано выще, в виде двухатомных молекул. При комнатной температуре и давлении I атм 12 представляет собой твердое вещество, Вг2-жвдкость, а С12 и Р -газы. Высокая реакционная способность р2 очень затрудняет обращение с ним. Хранить Р2 можно в металлических сосудах, например медных или никелевых, так как на их поверхности образуется защитное покрытие из фторида соответствующего металла. Обращение с хлором тоже требует особой осторожности. Поскольку хлор путем сжатия при комнатной температуре можно превратить в жидкость, обычно его хранят и транспортируют в жидкой форме в стальных емкостях. Хлор и более тяжелые галогены обладают большой реакционной способностью, хотя и не такой высокой, как фтор. Они непосредственно соединяются с большинством элементов, за исключением благородных газов. [c.290]


    Вторая часть книги, двадцать две ее главы (т. 2 и 3 в русском переводе), содержит систематическое описание строения молекул, молекулярных, олигомерных или бесконечно-полимер-ных ионов и кристаллов соединений разных химических классов. Очередность изложения материала можно назвать классической это именно тот порядок, который принят в большинстве учебников по неорганической химии. Просмотрев оглавление, читатель убедится, что автор движется по группам периодической таблицы Д. И. Менделеева последовательно рассматриваются соединения с участием водорода, галогенов, кислорода, серы и других халькогенов, азота, фосфора и их аналогов по группе и т. д. Такой порядок расположения материала делает монографию, с одной стороны, очень удобным и нужным дополнением к учебникам по неорганической химии (особенно полезным для аспирантов и соискателей степени кандидата наук), с другой стороны, хорошим источником сведений о структурных основах для научных работников — специалистов в той или иной области неорганической химии. Каждая глава (или группа глав) книги может служить фундаментом для разработки углубленных концепций о связи между реакционной способностью, строением и физико-химическими свойствами соответствующих классов соединений. [c.6]

    Термодинамические величины галогенов приведены в табл. 6. Как видно из таблицы, высокая реакционная способность фтора и прочность соединений фтора могут быть объяснены его малым ионным радиусом, высокой электроотрицательностью и наименьшими значениями термодинамических величин по сравнению с другими галогенами. [c.14]

    Константы равновесия для взаимодействия галогенов с бензолом и алкилбензолами уменьшаются в следующем порядке 1С1>1Вг>12>Вг2>С12 [34, 40, 41, 68—70]. Тот же порядок реакционной способности приводится для реакции галогенов с галогенидами с образованием тригалогенид-ионов [71]. Двуокись серы, как показали измерения константы образования комплекса с бензолом в четыреххлористом углероде, располагается в этой серии между бромом и хлором [45]. [c.117]

    Но так как а-галогенкетоны проявляют высокую реакционную способность в реакциях замещения и, как правило, не образуют карбенов, возможны и другие механизмы. Прямое замещение должно приводить к 0-алкилированному производному, но возможна также атака углеродным атомом бетаина (выполняющим роль мягкого основания) на галоген, поскольку енолят-ион, полученный из фенацилбромида, реагирует по атому углерода. Ве- [c.278]

    В процессе превращения субстрата в молекулу 6 лимитирующей стадией может быть либо отрыв протона, либо последующая потеря галогенид-иона. Необычная последовательность реакционной способности уходящих групп (Вг>1>С1) объясняется тем, что меняется стадия, определяющая скорость. Когда уходящей группой является Вг или I, лимитирующей стадией будет отрыв протона, и порядок скорости для этой стадии соответствует последовательности Р>С1>Вг>1. Когда же уходящей группой является С1 или Р, лимитирующим становится расщепление связи С—X, и порядок скорости для этой стадии соответствует последовательности 1>Вг>С1>Р. Подтверждение последнему факту было найдено при изучении конкурентных реакций. жега-Дигалогенобензолы с двумя различными атомами галогена обрабатывали ЫНг [29]. В таких соединениях наиболее кислый водород расположен между двумя атомами галогенов когда он отрывается, остающийся анион может терять любой атом галогена. Поэтому, изучая, какой из атомов галогена отщепляется предпочтительно, можно получить [c.11]

    Для химии элементов УПА группы характерны разнообразие и широкий диапазон свойств простых веществ, их высокая реакционная способность, образование соединений от типично ионных (с элементами 1А—ПА групп) до типично ковалентных (ССЦ, 5Рб и т. п.), образование сильных кислот с водородом (кроме Н2р2), непрочность соединений с высокоотрицательными элементами (известны лишь соединения с кислородом, серой и друг с другом (ОР2, 1С1з)). Кислородные соединения галогенов являются сильными окислителями. В рядах [c.423]

    Вслед за этапом, на котором образуется а-комплекс, следует обычно более быстрый этап отрыва протона ионом Fe li с образованием НС1 и регенерацией катализатора. О таком соотношении скоростей свидетельствует отсутствие кинетического изотопного эффекта. Однако при галогени])овании соединений, обладающих высокой реакционной способностью, например аминов и особенно фенолов, соотношение этих этапов может изменяться. Названные соединения с очень большой скоростью образуют ст-комплексы, которые иногда настолько стабильны, что их можно выделить из реакционной массы. В этих случаях этап отрыва протона от а-комплекса лимитирует суммарную скорость галогенирования и наблюдается кинетический изотопный эффект. [c.104]

    Понижение степени сольватации обычно используемых в биполярных растворителях-НДВС оснований типа НО и R0 может настолько повысить их реакционную способность, что они могут индуцировать Е2 еакции с участием весьма инертных соединений [306]. В таких растворителях галоген ид-ионы являются достаточно сильными основаниями, чтобы дегидрогалоге-нировать галогеналканы [73, 74]. В этих реакциях наиболее эффективен фторид-анион [307, 308, 600], а скорость элиминирования уменьшается в ряду Р >С1 >Вг >1 . [c.321]


    Во введении уже было сказано о том, что в присутствии противоположно заряженной частицы реакционная способность иона-реагента претерпевает изменения. В реакциях нуклеофильного замещения ассоциация с катионом всегда приводит к уменьшению нуклеофильности аниона. Однако то, как сильно снижается ну-клеофильность, зависит от конкретной реакции и условий ее проведения. Рассмотрим, например, реакцию Финкельштейна — реакцию обмена галогенидами (где Р — алкил, бензил, а X и X — обычно галоген, а иногда тозилат, брозилат и другие основные группы)  [c.253]

    Данные относительной реакционной способности показывают следующий порядок изменения реакционной способности алкилгалогенидов трет- > втор- > пере- > метил [19]. Этот порядок объясняется участием либо карбениевых ионов, либо комплекса галогеннда и катализатора. В любом случае гетеролиз связи С-галоген облегчается дополнительными алкильными группами. [c.233]

    Двойная связь обладает высокой реакционной способностью, поэтому олефины вступают в разнообразные реакции с раскрытием двойной связи. В частности, с галогенами Ха и с НХ олефины реагируют по ионному механизму и по радикальноцепному (см. гл. 9 и 10). Наряду с этими многостадийными механизмами присоединение Х2 и НХ по двойной связи при определенных условиях протекает молекулярным путем. Реакции предшествует образование молекулярного комплекса. [c.340]

    Как почти во всех реакциях алкилгалогенидов, реакционная способность по отношению к спиртовому раствору азотнокислого серебра изменяется в следующем порядке R1 > RBr > R 1. Для данного галогена реакционная способность уменьшается в ряду третичный > вторичный > первичный, т. е. в последовательности, характерной для образования карбониевых ионов аллил- и бензилгалогениды очень реакционноспособны. Имеются и другие доказательства (стереохимия, перегруппировки) в пользу того, что эта реакция представляет собой З Ьзамещение. Похоже, что ион серебра направляет реакцию по этому механизму (а не по 5 2), оттягивая галоген от алкильной группы  [c.472]

    Синтез Вильямсона представляет нуклеофильное замещение иона галогена алкоголят- или фенолят-ионом он аналогичен синтезу спиртов из алкилгалогенидов при действии водного раствора щелочи (разд. 15.10). Арилгалогениды нельзя использовать вследствие их низкой реакционной способности по отношению к нуклеофильному замещению, если в кольце не присутствуют ЫОа-группы (или другие сильные электроноакцепторные группы)-в орто- или nupu-положении к галогену (разд. 26.10). [c.537]

    Известны три общих метода введения галогена в ароматическое соединение с помощью электрофильного реагента. Такими реагентами, в порядке увеличивающейся реакционной способности, являются 1) молекулярный галоген 2) молекулярный галоген в присутствии катализатора, такого как галогениды иода, олова(IV), железа (III), сурьмы(V) и алюминия 3) положительно заряженный галоген, обычно связанный с носителем, например ионом хлорноватистой кислоты. Выбор одног из этих методов зависит от нуклеофильности ароматического субстрата. Так, хотя хлор или бром реагируют с бензолом в полярных или кислых растворителях, однако реакция проходит очень медленно для завершения реакции между хлором и бензолом требуется несколько дней. С другой стороны, реакция брома с анилином протекает настолько быстро, что ее можно проводить в разбавленных водных растворах при комнатной температуре. Но даже в этих условиях невозможно прекратить реакцию раньше, чем образуется 2,4,6-триброманилин. Это обусловлено, в основном, тем, что каждый из промежуточно образующихся броманилинов является более слабым основанием, чем предыдущий, и поэтому менее способен к протонированию. Для удобства дальнейшее изложение разделено на три части, в которых будут обсуждены реакции фторирования, хлорирования и бромирования, иодирования. [c.375]

    Взаимодействие спиртов с галогеноводородными кислотами представляет собой реакцию замещения, в которой активной частицей является сопряженная кислота спирта R—ОН2- Можно предполагать, что этот процесс будет аналогичен реакциям замещения атомов галогенов в органических галогенпроизводных при действии нитрата серебра и иодид-иона (опыты 16 и 17). Влияние структуры молекулы на реакционную способность органических соединений в этих реакциях совершенно одинаково. Так, первичные спирты не реагируют в заметной степени с соляной кислотой при обычной температуре даже в присутствии хлорида цинка. Это связано, с одной стороны, с тем, что хлорид-ион — слишком плохой нуклеофильный агент для того, чтобы эффективно участвовать В сопряженной реакции замещения, и, с другой стороны, со слишком малой стабильностью первичного карбониевого иона — промежуточного соединения при замещении по карбоний-ионному механизму. Бромистый и иодистый водород, имеющий более активные нуклеофильные анионы, реагирует с первичными спиртами значительно энергичнее. При этом иодистый водород оказывается более сильным нуклеофильным агентом. Именно такое соотношение способности к нуклеофильному замещению следует ожидать для этих веществ в гидроксилсодержащих растворителях. [c.174]

    Обсуждение. Многие галогенсодержаш,ие веш,ества реагируют с нитратом серебра, давая нерастворимые галогениды серебра. Скорость этой реакции может служить мерой реакционной способности атома галогена. Эти данные представляют большой интерес, так как позволяют сделать выводы о структуре молекулы. Активность галогена тем больше, чем сильнее его способность к ионизации. Наиболее ярким примером могут служить соли аминов и галогеноводородных кислот [КЫНз]+Х . Реже приходится сталкиваться с оксониевыми и карбониевыми солями, содержащими ионы галогенов. [c.234]

    Количественные исследования реакций у насыщенного атома углерода (5м2-замещение) и у ацильной группы гораздо более многочисленны, чем подобные исследования реакций у каких-либо других центров . Гаммет [6] впервые обратил внимание на то, что относительная реакционная способность галогенид-ионов в воде в 8к2-реакциях (см. табл. 5-18) обратна их термодинамической стабильности. Так, иодид-ион является наиболее нуклеофильным и также наиболее легко замещаемым из галогенов. Экспериментальные данные Батгейта и Мелвин-Хьюза [160] для равновесия [c.232]

    Реакционная способность в реакциях типа 5дг2. О пространственных затруднениях в субстрате уже упоминалось выше (стр. 226), как о доминирующем факторе в определении реакционной способности типа 5,у2. Кроме того, важны и электронные факторы. При взаимодействии отрицательных ионов с нейтральными субстратами сильные диполи таких субстратов производят эффект, который можно предвидеть заранее. Если данный диполь стремится оттянуть электроны от центра замещения, реакция протекает относительно легко. Примером служит высокая реакционная способность а-галоген-котонов и эфиров а-галогенозамещенных кислот при реакциях тииа 8 2 (см. обсуждение аналогичных влияний на кислотность, стр. 172). [c.244]

    Одной из этих групп обычно является водород. Элиминирование галогенов из 1,2-дигалогенидов и родственных соединений с помощью металлов или иодид-ионов не представляет практического интереса, так как дигалогениды почти всегда получаются присоединением галогена к олефннам. Настоящий обзор посвящен преимущественно механизмам р-элиминирования НХ и влиянию различных факторов на реакционную способность, хотя некоторое внимание будет уделено и препаративным приложениям. Эта обширная область изучалась в последние годы многими авторами [1—5]. Некоторые иа предложенных механизмов (они рассматриваются в последнем разделе этой главы) сомнительны. Большое же число реакций элиминирования протекает по одному из двух механизмов — Ei ш Е2. Как терминологией, так и фундаментальными представлениями о механизме этих реакций мы обязаны Хьюзу, Ингольду и их сотрудникам. [c.98]

    Относительные скорости реакции этилат-ионов с хлор-, бром- и фтор-1,1-дифенил-этиленами составляют 1, 4 и 270, соответственно [282, 283]. В этих случаях не может осуществляться механизм отщепления — присоединения, и определяющий скорость реакции разрыв связи углерод — галоген в случае фтора должен протекать медленнее, нем для хлора [276]. Остается предположить, что экспериментальные данные отражают относительно большую пол изацию, вызываемую фтором, который, к тому же, представляет для нуклеофила небольшое пространственное препятствие. Подобные реакции нуклеофильного замещения для других фторэтиленов протекают легко и приводят к образованию в сравнительно мягких условиях фторэфиров, фтортиоэфиров и других продуктов [284]. Имеется весьма мало данных об относительной реакционной способности нуклеофилов, используемых в реакциях -замещения у двойной связи, К этим [c.316]

    Характерной особенностью химического поведения винилгалогенидов является их инертность в реакциях S l и Sn2. Так, хлористый винил даже при длительном нагревании с раствором нитрата серебра в этаноле не образует хлорида серебра, не реагирует с иодистым калием по SN2-Tnny и при действии едкого натра лишь очень медленно образует ацетилен по реакции Е2. Для галогенацетиленов типа RG = С — С1 характерна такая н№ инертность в реакциях SnI и Sn2. Одна из причин низкой реакционной способности винилгалогенидов заключается в относительно большей прочности связи углерод — галоген по сравнению с алкилгалогенидами (см. стр. 81 и табл. 3-7). Далее, тот факт, что этилен и ацетилен являются более сильными кислотами, чем алканы (см. табл. 8-1), указывает на более ярко выраженные электроноакцепторные свойства ненасыщенных атомов углерода по сравнению с насыщенными углеродными атомами в алканах. Таким образом, можно ожидать, что чем легче будет осуществляться удаление протона, тем более трудным будет отрыв галогенид-иона от винил- или этинил-галогенидов в реакциях как SnI, так й Sn2. [c.289]

    Масс-спектрометрический анализ веществ высокой реакционной способности, таких, как фтор, фториды галогенов и фтористый водород, возможен при соответствующей конструкции прибора, выборе материалов и методике анализа. Были получены интересные сведения о процессе адсорбции НГ на поверхностях и о хлорирующих свойствах С1Гз. Наибольшее внимание обращено на факторы, оказывающие сильное влияние на характеристики ионного источника масс-спектрометра. [c.219]

    Реакции с соединениями фтора отличаются от реакций с соединениями других галогенов. Окисление фтор-иона термодинамически неблагоприятно элементарный фтор вызывает разложение перекиси водорода и образование ряда продуктов, пока еще полностью не идентифицированных. Уже в одной нз старых работ [169] отмечено влияние перекиси водорода на различные сме-ншнные фториды. Маас и Хэтчер [170] показали, что растворимость элементарных хлора и йода в безводной перекиси водорода не очень велика, и нашли, что бромид и йодид в отношении перекиси водорода обладают значительно большей реакционной способностью, чем хлорид. Изучено также влияние смесей из хлорида и бромида [171]. [c.333]

    Интервал характерных реакционных способностей ионов галогенов, измеренных как 5,Л , значительно шире, чем 5Ylg AP для ДАР (обычно k k k = 8,5 3 1), так что AG° AP,  [c.410]

    Порядок нуклеофипьной реакционной способности галоген-ионов (см. [82, 428] гп. 2, разд. 7. В) [c.625]

    ОНО оказывает воздействие и на реакционную способность бензольного кольца. Ион 4-бромфенилдиазония в неполярном растворителе в присутствии хлорид-иона гладко обмейивает галоген в пара-положении [уравнение (15.5)], однако реакция тормозится или прекращается в присутствии достаточной концентрации 18-краун-6-эфира [19]. Этот результат интерпретирован на основании сольватации краун-эфиром диазониевой функции, что сопровождается уменьшением значения Опара- [c.294]

    Обратный порядок (Р>С1>Вг>1) наблюдался при реакциях галогеннитробензолов с алкоголят-ионами или аммиаком в спиртах, а для реакции галогеннитробензолов с пиперидином или анилином в спиртах имеет силу ряд Р > Вг > С1 > I. Результаты этих исследований обобщены Паркером и Ридом [93], в статье которых можно найти соответствующие ссылки. Наконец, реакционная способность 1-галоген-2,4-динитробензолов по отношению к тиофеноляту натрия в метаноле уменьшается в ряду Р>Вг>1>С1 [89]. Все эти результаты удается удовлетворительно объяснить в рамках как одностадийного, так и двустадийного (с образованием промежуточного комплекса) механизмов. Отсюда можно заключить, что подобные исследования не позволяют сделать надежного выбора между двумя возможными механизмами реакции. [c.61]

    Очевидно, что доля бимолекулярного механизма повышается с увеличением концентрации и активности гидролизующего агента. Мономолекулярной реакции способствуют факторы, облегчающие гетеролиз С—С1-связи сильно диссоциирующие свойства среды (например, в случае водных растворов), а также стабильность промежуточно образующихся ионов карбония (трет- > втор- > > пере-). Изменение реакционной способности при бимолекулярном механизме является обратным (пере- втор- трет-), так как удлинение и разветвление алкильной группы ведет к росту индукционного эффекта, снижающего частичный положительный заряд на атоме углерода, связанном с галогеном. В результате первичные хлорпроизводные чаще гидролизуются по бимолекулярному механизму, а третичные — по мономолекулярному, однако наложение разных механизмов и структурных влияний часто приводит к тому, что вторичные хлорпроизводные оказываются менее реакционноспособными, чем первичные и третичные. Особенно высокой спосо1бностью к гидролизу обладают хлорпроизводные, содержащие ненасыщенную группировку или ароматическое ядро, соседние с тем углеродным атомом, при котором находится галоген. Наоборот, соединения, в которых хлор непосредственно [c.239]


Смотреть страницы где упоминается термин Галоген ионы, реакционная способность: [c.113]    [c.85]    [c.297]    [c.7]    [c.316]    [c.18]    [c.191]    [c.321]    [c.552]    [c.86]    [c.242]    [c.80]    [c.628]    [c.395]    [c.353]   
Механизмы реакций в органической химии (1977) -- [ c.109 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы галогенов реакционная способность как замещаемых групп



© 2025 chem21.info Реклама на сайте