Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллографические плоскости

    В ряде работ установлено уменьшение скорости активного растворения металлов с увеличением плотности упаковки атомов в кристаллографической плоскости, в результате чего снижается поверхностная энергия и повышается энергия активации ионизации металла. Плотность упаковки атомов может также влиять на [c.326]

    По В. П. Батракову (1962 г.), интенсивной линейной локализованной коррозии вследствие приложенных извне или внутренних напряжений подвержены границы зерен или блочных структур, своеобразные группировки атомов по кристаллографическим плоскостям, дислокации и другие искажения кристаллической решетки, находящиеся в активном состоянии. [c.335]


    Грин и Ли [202] предложили различать идеальную и неидеальную твердые поверхности. Первая — это поверхность, на которой положения атомов могут быть рассчитаны из известной структуры кристалла и рассмотрения кристаллографических плоскостей. К неидеальным отнесены два типа так называемых смещенных поверхностей с атомами, сдвинутыми на короткие расстояния, но сохранившими связи между собой, и с атомами, совершившими миграцию к новым центрам, что привело к разрушению связей между ними. [c.179]

    Кристаллографическими исследованиями углерода коксового остатка частиц установлено, что они также имеют кристаллитные включения и даже отдельные монокристаллы. Содержание кристаллитов в коксе зависит от температуры коксования и обычно увеличивается с возрастанием температуры процесса. Аналогичная закономерность замечена в углероде топлив, имеющих различный геологический возраст. Чем старше топливо, тем больше в нем кристаллит-ных включений. Таким образом, углерод топлива имеет неоднородную структуру поверхности. Степень неоднородности углеродной поверхности изменяется в зависимости от доли различных кристаллографических плоскостей, составляющих поверхность, и от их величины. [c.140]

    Измерение ШРР ориентированных поликристаллических образцов позволяет не только определить степень ориентации главной цепи, но также и ориентацию двух других кристаллографических осей. Пусть монокристалл состоит из кристаллических ячеек с кристаллографическими осями а, Ь VI с (будем считать для простоты, что эти оси взаимно перпендикулярны, как в орторомбической решетке полиэтилена). Можно считать, что плоскости образованы вершинами кристаллической решетки, которые играют роль отражателей импульсного рентгеновского излучения. Результирующий эффект взаимного усиления отраженных импульсов от последовательных плоскостей, отстоящих друг от друга на расстоянии d, зависит в соответствии с законом Брегга от угла 0, под которым рентгеновское излучение попадает на отражающую кристаллографическую плоскость  [c.72]

    В твердых растворах, или, как их иначе называют, смешанных кристаллах, замещение вакантных мест может быть как неупорядоченным, так и упорядоченным. Например, в смешанных кристаллах золото — медь одни кристаллографические плоскости заняты только атомами золота, другие — только атомами меди. [c.121]

    Любое кристаллическое вещество обладает фиксированным для данного вещества и состояния набором межплоскостных расстояний d, поэтому на практике можно варьировать только две величины — длину волны рентгеновского излучения X или угол образующийся между первичным пучком рентгеновских лучей и кристаллографической плоскостью. [c.113]


    Если при неподвижных источнике и рассеивателе получать дифракционный максимум при б = О на одном и том же источнике, а концентрацию мессбауэровского изотопа менять в рассеивателе от с = О до с = С2, то, как это будет ясно из следующего пункта, появляется возможность, регистрируя отражение, учитывать вклад в общую интенсивность рассеяния от Л .. Сравнивая эксп (Н) и (Н), можно находить кристаллографические плоскости, в которых располагаются ядра мессбауэровского изотопа. [c.233]

    Можно сделать заклгочеиие, что иове))хность поликристалли-ческого материала, состоящая из ра,1личиых кристаллографических плоскостей, является неоднородной вследствие того, что разные грани кристаллов характеризуются различными тепло-тамн адсорбции. Но, как мы видели из данных по 1)аботам выхода иа вольфраме, эти различия не очень велики. Поэтому указанная неоднородность, по-видимому, обусловливает только некоторую часть наблюдаемого уменьшения теплот хемосорбции с увеличением степени заполнения, ио не весь эффект в целом. [c.125]

    С теоретической точки зрения поверхностная энергия отождествляется с изменением потенциальной энергии при раскалывании кристаллов вдоль определенной кристаллографической плоскости и удалением двух частей на бесконечное расстояние друг от друга. Так как поверхностное натяжение связано с энергией разрыва межмолекулярных связей, то оно ими и обусловлено. [c.263]

    Различны механические свойства монокристаллов металла в зависимости от направления нагрузки относительно кристаллографических плоскостей. Например, значения модуля Юнга (ГH/м ) монокристалла а-железа (ОЦК) в зависимости от ориентации  [c.268]

    В местах выхода дислокаций на поверхность кристалла после травления образуются микроскопические углубления ( ямки травления ), которые легко наблюдать в микроскоп. Форма ямок зависит от ориентации кристаллографических плоскостей, подвергающихся травлению (от индексов грани). Например, на плоскостях 111 германия и кремния получаются ямки треугольные Л, на плоскостях 100) — квадратные и на плоскостях (ПО) —прямоугольные Г 1. [c.140]

    Если в правом конце лодочки поместить монокристаллическую затравку и образовать одну зону плавления непосредственно рядом с затравкой, то, перемещая зону плавления влево, можно получить весь слиток германия в виде монокристалла с ориентацией кристаллографических плоскостей, какие имела затравка. Если в расплавленную зону ввести легирующую примесь с К <. 1, например 1п, то при прохождении зоны расплава вдоль всего слитка можно достигнуть равномерного распределения примеси и получить образцы с определенным типом проводимости и с определенной концентрацией подвижных носителей заряда в примесном полупроводнике. [c.262]

    Теоретическая интерпретация. [63] основана на концепции короткоживу-щих активных центров — кристаллографических плоскостей с высоким индексом (т. е. с менее плотной упаковкой атомов и потому более химически активных по сравнению с плоскостями низкого индекса). Такие плоскости образуются на поверхности образца в процессе пластической деформации при выходе ступенек скольжения. Время жизни активных мест определяется встречным процессом их коррозионного растворения с последующим переходом в более плотноупакованные плоскости низкого индекса. Кромки или ребра ступенек скольжения также рассматриваются как активные центры, хотя и менее интенсивные. Однако приведенная интерпретация представляется недостаточной и противоречивой. [c.73]

    При трении происходит сдвиг слоев твердой смазки, при этом в силу слабых вандерваальсовых связей между слоями сопротивление сдвигу будет очень малым. Малое сопротивление сдвигу между двумя кристаллографическими плоскостями еще не является достаточным критерием для оценки смазывающей способности твердой смазки. Поверхности скольжения слоистых кристаллов бывают ровными и гладкими или волнистыми и гофрированными. Для графита характерны ровные (гладкие) одноатомные слои, для сульфидов молибдена — ровные трехслойные пакеты, а для антимонита (ЗЬгЗз) — зигзагообразные сдвоенные цепи. Очевидно, что скольжение в кристалле вдоль ровных и гладких поверхностей намного легче, чем вдоль поверхностей неровных и волнистых. [c.204]

    Существуют два способа обработки полученных адсорбционных данных для вычисления поверхности (и дисперсности). По первому, основанному на допущениях о величине монослоя адсорбированного газа, механизме хемосорбции и одинаковой вероятности экспозиции различных кристаллографических плоскостей активного металла (в катализаторах металл на носителе ), удельная поверхность исследуемого компонента 5мет вычисляется по формуле  [c.374]

    Активные центры оказывают значительно меньшее влияние на силы, действующие между ионами и поверхностями металлов, которые были рассмотрены в разделе У,3. Центры, активные по отношению к неполярным силам Ван-дер-Ваальса, в данном случае не являются активными. Согласно упрощенной схеме, описанной в разделе У,3, при одной и той же величине равновесного расстояния все кристаллографические плоскости должны притягивать адсорбируемые частицы с одинаковой си-ло11. Однако в дейетвительноети расстояние Го не остается всегда постоянным имеются также и другие менее существенные различия, и можно ожидать, что реальные поверхности будут неоднородны также по отношению к этим адсорбционным силам, хотя и в значительно меньшей степени, чем по отношению к неполярным силам Ван-дер-Ваальса. [c.67]


    Как мы видели в разделе VI, 2, физическая адсорбция обычных газов на ионных поверхностях происходит вследствие совместного действия сил Ван-дер-Ваальса и поляризации молекул электрическими полями поверхности. Активные центры (раздел V, 12) оказывают влияние на оба эти эффекта. Поэтому реальные неоднородные поверхности ионных адсорбентов, состоящие из различных кристаллографических граней, межкристаллитных границ, ребер, вака.нтных мест и других типов активных участков, будут практически во всех случаях адсорбировать первые молекулы с относительно большой теплотой адсорбции. С увеличением степени заполнения теплота адсорбции будет заметно уменьшаться [177]. Крофорд и Томпкинс [178] при изучении адсорбции сернистого газа, двуокиси углерода и других газов на фтористом кальции и фтористом барии нашли, что теплоты адсорбции уменьшаются с увеличением количества адсорбированного газа. Они приписывают этот эффект неоднородности исследованных поверхностей, а также наличию различных кристаллографических плоскостей. [c.112]

    Металлические пленки, получаемые испарением металла и последующей его конденсацией, также захватывают примеси из вакуума . Во время получения этих пленок за счет испарения металла достигается очень высокий вакуум. После этого происходит загрязнение пленки следами газов, выделяющихся из различных частей прибора. Однако благодаря весьма большой величине поверхности пленки могут сохраняться в чистом состоянии значительно дольше, чем нити. Многие пленки, по-видимому, имеют еще и то преимущество, что их поверхность образована преимущественно одной кристаллографической плоскостью. При этом методе приготовления металлических поверхностей создаются необычные условия для процесса кристаллизации [11], и поэтому возможно, что образующаяся кристаллическая грань отличается от граней, возникающих при получении исследуемого металла другими методами. Использование пленок имеет, однако, один недостаток. Вследствие исключительно большой величины поверхности пленок на единицу веса металла [262] они обладают высокой поверхностной энергией. Средняя толщина первичных слоев, из которых состоит вся пленка, очень мала, и поэтому пленки по своим электрическим свойствам отличаются от обычных металлов [263], Во многих случаях у пленок наблюдается некоторое увеличение параметров решетки, достигающее 1—2% [264]. Лишь после сильного спекания их структура приближается к более нормальному состоянию металла. Согласно наблюдениям Миньоле [259], у пленки работа выхода в процессе спекания возрастает, приближаясь к величине, характерной для нормального металла. Вполне возможно, что во время процесса спекания происходит захват примесей. На получение пленок с сильно развитой поверхностью, а следовательно, с предельно открытой структурой большое влияние оказывает скорость испарения и конденсации металла. Пленки вольфрама по своим свойствам несколько более приближаются к нормальным металлам, чем не подвергнутые спеканию никелевые пленки. [c.142]

    Гетерогенным называют катализ на поверхности твердых тел, находящихся в контакте с реагирующими веществами в газовой фазе или в растворах. Основные теоретические положения, необходимые для понимания сущности гетерогенного катализа, уже изложены в гл. 14 в связи с обсуждением роли адсорбции в гетерогенных реакциях. При проведении реакции на поверхности твердых тел последняя играет вполне определенную роль благодаря адсорбции на поверхности понижается энергия активации катализируемой реакции. До настоящего времени еще не существует удовлетворительной количественной теории катализа. В любой каталитической реакции важнейшее значение имеет структура поверхности. Катализ протекает не на всей поверхности твердого тела, а главным образом на активных центрах (дислокациях, ребрах кристаллов и других дефектах кристаллов). Кроме того, известно, что каталитическая активность зависит от кристаллографической плоскости, — кристаллы, ориентированные в некоторых определенных направлениях, обладают максимальной активностью. Большое значение в гетерогенном катализе имеют смешанные катализаторы. Примером могут служить почти все известные газовые реакции, используемые в химических технологических процессах (синтез аммиака, синтез 50з, гидрирование угля по Бергиусу или Фишеру— Тропшу, окисление аммиака по Оствальду и многие другие). [c.196]

    Электронно-микроскопические исследования выявили очень дефектную структуру кристаллов алита в клинкерах и твердых растворах 3S. Блочность кристаллов проявляется в виде ручьевых узоров со средним размером ячеек 200—400 нм, что вызвано пересечением трещинами скола системы винтовых дислокаций, ориентация которых одинакова. Распространение трещины происходит по определенным кристаллографическим плоскостям. Таким образом, зная расстояние между дислокационными линиями, можно определить плотность дислокаций в минерале. Движение сетки дислокаций в процессе излома кристалла и скопления их на границах раздела блоков вызывает образование характерной ячеистой структуры минерала. Другим компонентом дефектной структуры является образование ямок травления в местах выхода дислокаций. Ямки травления на кристаллах исследуемых образцов имеют форму пирамиды, а их размеры увеличиваются пропорционально длительности травления. Этот факт свидетельствует в пользу того, что ямки травления дислокационные, поскольку ямки травления недислокационного происхождения, как правило, имеют форму усеченной пирамиды и исчезают при продолжительном травлении. [c.237]

    В практике электрохимических исследований применяют также более простые торцовые электроды с точечной поверхностью (запаянная в стекло проволока, наиболее часто платиновая), иногда в этих целях используют кристаллографическую плоскость монокристалла (рис. 38). Изоляция позволяет выде тить принятую в опыте поверхность торца, но при этом возникает опасность загрязнения исследуемого электрода продуктами разложения изолирующего вещества. [c.73]

    Дислокационная модель ползучести. При растяжении неде-формированного монокристал-лического образца в нем возникают сдвиговые напряжения <рис. 81). Если величина сдвигового напряжения (од, = ха) равна или превышает критическое напряжение сдвига, происходит скольжение по преимущественным кристаллографическим плоскостям и наряду с упругой деформацией сдвига у = [c.187]

    При перемещении смещенных атомов в положение равновесия происходит некоторое распрямление пакетов кристаллографических плоскостей. Оно заканчивается при данной температуре в момент соприкосновения ребер пакетов. Уменьшение искривленности (т.е. рост текстурированности) плоскостей делает возможным утолщение пакетов в направлении, перпендикулярном к плоскости базиса. Оно осуществляется посредством диффузии (на что требуется время) в основном вакансий. [c.25]

    Проявление разнообразных случаев етруктурной коррозии сплавов связано е различными скоробтами растворения отдельных структурных составляющих, имеющих разный химический состав, а также физически неоднородных участков металла (зерна, границе зерен, блочные структуры, границы блочных структур, кристаллографические плоскости и плоскости скольжения с различными атомными группировками, дислокации и другие дефекты кристаллической решетки). [c.32]

    Сплавы, склонные к коррозии под напряжением, характеризуются по крайней мере двумя анодными кривыми — основным фоном металла и участком, на котором возникает надрез с пиком напряжения, имеющим наиболее высокую скорость растворения. Такими участками могут быть структурные составляющие, границы зерен, блочных структур, кристаллографические плоскости и плоскости скольжения, дислокационные структуры. Наиболее интенсивно коррозия под напряжением развивается, когда надрезы находятся в активном состоянии или в еостоянии пробоя. [c.39]

    Роль нормальной компоненты травления сводится к обеспечению появления с достаточной частотой зародышей моноатом-ной глубины вдоль оси дислокации. Далее эти зародыши расширяются со скоростью Ra, так как величина Rq чрезвычайно быстро убывает с увеличением расстояния от центра дислокации. Поскольку направление перемещения ступеней Rp, параллельно наиболее плотноупакованньш кристаллографическим плоскостям, стенки ямок травления соответствуют формам определенной кристаллографической ориентации, как это обычно и наблюдается. [c.63]

    При заданной величине ст вероятность развития скольжения выше для тех преимущественных систем скольжения, где фактор ориентации os 0 os ф имеет наибольшее значение. Следовательно, величина растягивающего напряжения, нeoбxo l,имoгo для обеспечения скольжения в различно ориентированных зернах поликристалла, различна в зависимости от кристаллографической ориентации зерна относительно оси образца, и поэтому при а = = onst в разных зернах скольжение будет развиваться по различным системам кристаллографических плоскостей (преимущественно вдоль базисных плотноупакованных), а в отдельных неблагоприятно ориентированных зернах может вообще не развиваться. С этим связана неравномерность распределения деформационного микрорельефа на поверхности поликристаллического материала, особенно при относительно небольших степенях деформации, когда скольжение развивается в ограниченной системе плоскостей, расположенных под различными углами к поверхности зерен. Увеличение степени деформации способствует более равномерному распределению микрорельефа между различными зернами как вследствие вовлечения новых систем скольжения, ранее не действовавших из-за неблагоприятной ориентировки и недостаточности стартового напряжения, так и вследствие фрагментации зерен. При этом значительно проявляется рельеф границ зерен, связанный с линейными смещениями и разориентировкой границ. [c.174]


Смотреть страницы где упоминается термин Кристаллографические плоскости: [c.21]    [c.349]    [c.129]    [c.72]    [c.61]    [c.143]    [c.48]    [c.133]    [c.151]    [c.60]    [c.17]    [c.197]    [c.35]    [c.68]    [c.102]    [c.61]    [c.70]    [c.172]    [c.126]   
Физическая химия (1978) -- [ c.571 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллографические плоскости индексы Миллера

Обозначение кристаллографических плоскостей

Определение кристаллографических направлений и плоскостей

Плоскость кристаллографического сдвига ПКС

Элементы симметрии и классификация кристаллических форм Кристаллографические направления и плоскости. Закон рациональных отношений. Индексы граней и направлений



© 2025 chem21.info Реклама на сайте