Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели структуры потоков рециркуляционная

    Полученные выше зависимости, устанавливающие связь между моментами рециркуляционной модели с застойными зонами и без застойных зон и характеристиками взаимодействия проточных и застойных зон, справедливы и для других моделей структуры потока с застойными зонами. Приняв в этих зависимостях х = 0 (отсутствие обратных потоков между ячейками), можно получить соответствующие выражения для моментов кривых отклика ячеечной модели с застойными зонами. [c.126]


    При X—>-1 и п— -с , как было показано ранее (с. 118), выражения для Mi,h трансформируются в уравнения моментов диффузионной модели с застойными зонами. При п—рециркуляционная модель с застойными зонами переходит в модель идеального вытеснения с застойными зонами. В табл. 4 приведены выражения для моментов С-кривой наиболее распространенных моделей структуры потока с застойными зонами [60]. [c.126]

    Для исследования продольного перемешивания s экстракционных колоннах с отстойниками на основе рециркуляционной модели структуры потока используется [43] схема модели по рис. IV-21. Здесь рабочая часть колонны объемом Vp представляет каскад из п последовательных ячеек полного перемешивания с транзитным потоком V и рециркуляционным потоком между ячейками ш. Для учета влияния на кривые отклика отстойной зоны она представляется в виде ячейки объемом Уот со средней концентрацией трассера Сот. Между отстойной зоной и последней, л-й, ячейкой рабочей части колонны происходит массообмен за счет конвективных потоков жидкости (Ост. [c.139]

    При анализе реальной гидродинамической структуры потоков часто используются более сложные модели, построенные на основе приведенных в табл. 4.4. К таким моделям относятся комбинированные, образованные путем соединения ячеек полного перемешивания, вытеснения, застойных зон, байпасных и рециркуляционных потоков. Определение параметров моделей структуры потоков и решения в виде передаточных функций подробно изложено в монографии [41]. [c.121]

Рис. 11-4. Схема структуры потока по рециркуляционной модели продольного перемешивания Рис. 11-4. <a href="/info/152336">Схема структуры потока</a> по <a href="/info/630271">рециркуляционной модели</a> продольного перемешивания
    В промышленных экстракторах основной отстойник для отделения сплошной фазы от дисперсной располагается на выходе сплошной фазы (рис. 1У-17). Структура потока, учитывающая наличие отстойников, может описываться как диффузионной, так и рециркуляционной моделью. [c.132]

    При числе секций 8—10 структура потока в колонне, вполне соответствующая рециркуляционной модели, хорошо аппроксимируется также диффузионной моделью, удовлетворяя зависимости (IV.75). Так как Pe = uL/ n, n=L/H и f = W lu, то эту зависимость можно выразить уравнением [c.151]


    Расчет профиля концентраций по уравнениям ( 1.20) — ( 1.27) или ( 1.61) — ( 1.68) практически возможен лишь с помощью ЭВМ. Как уже отмечалось, при Ре Реу 20 можно использовать уравнения ( 1.95) и ( 1.96). Возможен более простой метод расчета и в случае Ре Реу [231]. Этот метод основан на том, что структура потока с меньщей интенсивностью продольного перемешивания (большим числом Пекле) описывается ячеечной моделью, а структура второго потока — рециркуляционной моделью. Рассмотрим два возможных случая. [c.227]

    При анализе реальной гидродинамической структуры потоков часто используют более сложные модели, построенные на основе приведенных в табл. 2.1. К таким моделям относятся комбинированные, образованные путем соединения ячеек полного перемещивания, вытеснения, застойных зон, байпасных и рециркуляционных потоков. [c.84]

    Исследование структуры потоков жидкости обычно проводят путем изучения распределения частиц жидкости по времени пребывания. Поскольку перемещение жидкости в вышележащую секцию в рассматриваемых прямоточных секционированных аппаратах происходит путем ее срыва газом с поверхности газожидкостного слоя в зонах пониженного статического давления под отверстиями в полотне тарелки, обратные потоки между секциями отсутствуют уже при скорости газа по сечению аппарата выше 0,4 м/с. В этом случае аппарат можно представить как каскад последовательно расположенных ячеек, между которыми нет рециркуляционных потоков. Перемешивание в ячейках характеризуется общим коэффициентом продольного перемешивания D, включающим в себя коэффициенты турбулентной и осевой диффузии. Известно, [П6], что по виду функции определения времени пребывания частиц в секции можно определить, какая математическая модель (идеального вытеснения, идеального смешения, диффузионная, ячеечная) соответствует процессу в том или ином конкретном случае. Для получения функций распределения времени пребывания используют выходные кривые, получаемые при ступенчатом или импульсном, представляемом в виде б-функ-ции Дирака или периодически изменяющемся по гармоническому закону вводе индикатора в аппарат или его модель. [c.186]

Рис. У 7. Канальная модель струк- Рис. У-8. Рециркуляционная модель туры потока жидкости на тарелке, структуры потоков жидкости на тарелке. Рис. У 7. <a href="/info/30277">Канальная модель</a> <a href="/info/1769042">струк</a>- Рис. У-8. <a href="/info/630271">Рециркуляционная модель</a> туры <a href="/info/64929">потока жидкости</a> на тарелке, <a href="/info/1465183">структуры потоков жидкости</a> на тарелке.
    Ячеечная модель с обратным перемешиванием между ячейками. В этом случае колонна рассматривается как последовательность участков с сосредоточенными параметрами, причем каждый из участков эквивалентен ступени идеального смешения. Структура потоков в модели показана на рис. 192. Величины рециркуляционных потоков [c.378]

    Структура потоков в модели показана на рис. 214. Величина рециркуляционного потока характеризует интенсивность заброса ве- [c.425]

    Большинство процессов химической технологии имеют двойственную дстерминированно - стохастическую природу. Исходя из этого, во втором разделе рассматриваются экспериментальные методы исследования структуры потоков, позволяющие учесть стохастическую составляюидую процесса. Рассматриваются элементы типовых моделей структуры потоков модели идеального смешения и вытеснения, диффузионной, рециркуляционной, ячеечной моделей и комбинированных моделей. [c.3]

    Степень продольного перемешивания фазы х больше, чем фазы у Реу>Рбзс. Структуру потока фазы у опишем ячеечной моделью, а фазы X — рециркуляционной моделью. Параметры моделей при этом выразятся следующим образом  [c.227]

    Зависимости (13.8) и (13.10) позволяют решать проектную и эксплуатационную задачи для реального процесса в каскаде СОЭ. Их считают применимыми и к колонному экстрактору, если структура двухфазного потока в нем отвечает каскаду ступеней идеального перемешивания (ИП) — когда отклонения движения потоков от противотока описываются ячеечной моделью продольного перемешивания. Эти зависимости в той же мере применимы для практических расчетов экстракционных колонн с внешним подводом энергии. Дело в том, что в колоннах промышленных масштабов суммарный эффект продольного перемешивания вещества в обеих фазах обычно эквивалентен числу ячеек идеального перемешивания п > 10. При таких п расчет по более сложным моделям (циффузионной, рециркуляционной) дает практически те же результаты, что и по значительно более простой — по зависимостям (10.53) и (13.10)  [c.1130]


Смотреть страницы где упоминается термин Модели структуры потоков рециркуляционная: [c.237]    [c.253]   
Основы жидкостной экстракции (1981) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Модели рециркуляционные

Структура потоков



© 2025 chem21.info Реклама на сайте