Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические характеристики комплексообразования

    Концентрационные константы устойчивости позволяют получить значение энергии Гиббса образования комплексного соединения, когда в качестве стандартного состояния выбрано состояние раствора ионной силы /. Константа устойчивости, энергия Гиббса, энтальпия и энтропия образования комплекса составляют термодинамическую характеристику комплексообразования, которая позволяет оЦенить факторы, определяющие устойчивость комплексов. [c.616]


    Формулу (Х.18) можно исиользовать для определения констант равновесия процессов комилексообразования с водородной связью. Для вычисления констант равновесия и получения термодинамических характеристик комплексообразования по уравнениям (Х.17) и (Х.18) разберем условия определения величины Кр по данным химических сдвигов. [c.268]

    Термодинамические характеристики комплексообразования при различных температурах приведены в табл. 1.13. Обращает на себя внимание, что температурная зависимость констант образования комплекса а-СуВ с иодом имеет максимум в районе 298 К (см. рис. 1.4). [c.40]

Таблица 1.5. Термодинамические характеристики комплексообразования иода с органическими растворителями в четыреххлористом углероде (кДж/моль, Т = 298 К, шкала мольных долей) Таблица 1.5. <a href="/info/1535231">Термодинамические характеристики комплексообразования иода</a> с <a href="/info/8337">органическими растворителями</a> в <a href="/info/1356">четыреххлористом углероде</a> (кДж/моль, Т = 298 К, <a href="/info/757775">шкала мольных</a> долей)
    Необходимо подчеркнуть, что особенности строения дипЬптидов отражаются на энергетических параметрах их взаимодействия с эфиром 18-краун-б. Метильная группа пептидов, расположенная вблизи макроциклического кольца, способствует образованию энтропийно стабилизированных комплексных частиц. Структурные изомеры имеют значительно отличающиеся термодинамические характеристики комплексообразования, в то время как пептиды, имеющие подобное геометрическое строение, взаимодействуют одинаково с 18-краун-б. Выявленные отличия комплексообразования дипептидов различного строения с эфиром 18-краун-б также могут служить основой молекулярного узнавания этих соединений макроциклическим лигандом. [c.216]

    Термодинамические методы широко используются при исследовании природных и биополимеров. Вместе с тем, в отличие от обширной литературы, посвященной белкам, полипептидам и нуклеиновым кислотам, термодинамические свойства полисахаридов представлены достаточно скудно. Имеющийся обзор [81] дает некоторые общие сведения о термодинамических характеристиках полисахаридов в растворах и их взаимодействиях с ионами металлов. Термодинамические характеристики комплексообразования иода с полисахаридами существенно расширяют представления о процессах кооперативного взаимодействия. [c.37]

    Опираясь на термодинамические характеристики комплексообразования иода с циклодекстринами, можно глубже понять особенности взаимодействия иода с канальной полостью в комплексе с амилозой. Использование а-, и у -циклодекстринов, включающих соответственно [c.39]


Таблица 2. Термодинамические характеристики комплексообразования аминокислот с ионами Си(П) (СигЗ, твердая фаза) Таблица 2. Термодинамические характеристики комплексообразования аминокислот с ионами Си(П) (СигЗ, твердая фаза)
    Некоторые методы определения констант устойчивости комплексных соединений были разработаны Яцимирскнм [7]. Им рассмотрен также вопрос о получении термодинамических характеристик комплексообразования в растворе. Часто необходимо знать зависимость констант устойчивости от ионной силы раствора. В работе [8] на примерах галогенидных и псевдога-логенидных комплексов показана применимость уравнения Дэвиса для оценки изменения констант устойчивости при изменении ионной силы раствора вплоть до ионной силы р,=0,8М. Васильев [9] нашел, что зависимость константы устойчивости от ионной силы монороданидного комплекса железа (П1) в широком интервале величин ионной силы и=0,3 — 5,0 М удовлетворительно описывается уравнением типа Дебая — Хюккеля [c.490]

    Исследование комплексообразования в. растворах ведется довольно интенсивно на протяжении нескольких десятков лет. Достигнуты успехи в определении констант устойчивости комплексов многих металлов с разнообразными лигандами, в том числе с галогенами. Проводится изучение влияния иоиной силы [1—5], внешнесферных катионов [6—8], кислотности [9—15] на термодинамические характеристики комплексообразования изучаются многоядерные и смешанные комплексы [1, 16] делаются попытки отличить комплексы типа ионных пар от комплексов, образованных путем замешения одних внутрисферных лигандов на другие [1, 17], и т. д. [c.78]

    В тех случаях, при которых с хорошей точностью выполняются не только общие закономерности [например, d gkld le) = onst], но и получаются разумные расчетные значения наклонов зависимостей, свободных энергий сольватации, радиусов частиц и расстояний максимального сближения, не зависящие или мало зависящие от химической природы растворителя, следует смело утверждать, что в исследуемой реакции доминируют электростатические взаимодействия реагентов со средой. В противном случае надо учитывать специфическую сольватацию и искать термодинамические характеристики комплексообразования реагентов с растворителем. [c.238]


Смотреть страницы где упоминается термин Термодинамические характеристики комплексообразования: [c.186]   
Комплексоны (1970) -- [ c.26 ]

Комплексоны (1970) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне



© 2024 chem21.info Реклама на сайте