Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прандтля прямоугольный

    И. Наклонные полости. Наклонные прямоугольные полости широко используются в солнечных коллекторах, а следовательно, изучению конвекции в этих условиях уделялось большое внимание. Однако вследствие зависимости теплообмена от углов наклона, поворота, а также от отношений сторон, чисел Релея и Прандтля поведение конвекции не является полностью описанным. Развитие конвекции в наклонных гексагональных цилиндрических и кольцевых полостях изучалось недостаточно полно. [c.308]


    Влияние формы канала. Соотношение (3.22)—(3.24) выведены для каналов круглого сечения. Эти соотношения также применимы для длинных прямых каналов прямоугольного, треугольного и других форм поперечного сечения при условии, что числа Рейнольдса и Прандтля вычисляются по эквивалентному диаметру канала [27—291. Когда форма канала такова, что возможен отрыв потока, как, например, при поперечном обтекании пучка труб, ребер с разрывами или ребер с волнистой поверхностью, ее влияние нельзя учесть теоретически. В этих случаях следует использовать экспериментальные данные, полученные на моделях или полномасштабных установках. [c.58]

    Режимы течения. Экспериментальные исследования течений воздуха [76] и силиконового масла [79] при числах Прандтля порядка 1000 внесли большой вклад в понимание механизмов течения и переноса тепла в вертикальных прямоугольных полостях. В первой из этих работ, т. е. для случая воздуха, коэффициент формы А менялся в диапазоне 2,1—46,7, а число Рэлея — от 200 до 2-10 . Температурное поле исследовалось с помощью интерферометра Маха — Цандера. При малых значениях Ка доминировал процесс теплопроводности, а между вертикальными стенками в области, удаленной от концов, наблюдалось линейное распределение температур. Вблизи концов полости существенную роль начинали играть эффекты конвекции. При больших Ка на вертикальных поверхностях возникали пограничные слои, а зона ядра оказывалась линейно и устойчиво стратифицированной. [c.255]

    Было проведено также значительное число экспериментальных исследований конвективного теплообмена в вертикальных прямоугольных полостях. При этом оценивалось влияние числа Рэлея, коэффициента формы и числа Прандтля на картину течения, а также на характер теплоотдачи. В общем эти результаты весьма хорошо согласуются с известными численными решениями и с немногими имеющимися теоретическими расчетами. И хотя анализ теплопередачи во многих из этих работ играл первостепенную роль, лишь в некоторых из них исследовались механизмы течений жидкости в полостях (см., например, работы [24, 254], а также анализ свободноконвективных течений в ртути [162]). [c.264]

    Проведен также ряд исследований случая вертикальных цилиндрических кольцевых областей. Получены, в частности, численные результаты для изотермических поверхностей [70, 264] опубликованы обширные экспериментальные данные по этому вопросу [183, 250]. При численном решении этой задачи [245] получены результаты, качественно близкие результатам для вертикальных прямоугольных полостей. При Ra > 5-10 , где число Рэлея вычислялось по толщине зазора d, было установлено, что в полости существует полностью развитый пограничный слой. Опубликованы результаты измерений теплопередачи в воздухе и гелии при 10 < Ra С 2,3-10° для случая, когда на внутренней стенке задавался постоянный тепловой поток, а внешняя стенка считалась изотермической [136]. Проведены экспериментальное и численное исследования переноса в концентрических и эксцентрических цилиндрических кольцевых областях различной высоты [46, 257]. С использованием линейной теории проведено исследование устойчивости течения в вертикальном цилиндрическом кольцевом слое [51]. Расчеты показали, что число Прандтля влияет на возникновение неустойчивости, причем наличие предсказанного режима неустойчивости было экспериментально подтверждено для воздуха. [c.294]


    Ряд аналитических решений для теплопередачи и гидравлического сопротивления при движении в гладких трубах собран в гл. 6. в ней даны достаточно полные решения для случаев ламинарного и турбулентного течения в круглых трубах. Представлены обширные данные о теплообменных поверхностях, состоящих из концентрических круглых труб (труба в трубе), включая методику расчета асимметричного нагрева таких поверхностей. Рассмотрены, хотя и менее полно, трубы прямоугольного и треугольного сечений. Аналитические решения, представленные в гл. 6, не ограничиваются диапазоном чисел Прандтля для газов в отличие от экспериментальных данных, со- [c.17]

    Для турбулентного течения в трубах с прямоугольной кромкой на входе при средних числах Рейнольдса выще 10 ООО и числах Прандтля от 0,7 до 120 рекомендуется применять сочетание уравнений (913(1) и (9-10 с) или (9-ЮЬ) .  [c.309]

    С. Прямоугольные полости, обогреваемые и охлаждаемые с боковых сторон. Картины развития течения и интенсивность теплообмена в прямоугольной полости, обогреваемой и охлаждаемой иа боковых стенках, существенко зависят от отношений сторон, а также от чисел Релея и Прандтля. Большинство экспериментальных и теоретических результатов получено для длинных каналов, таких, что отношение длин к ширине является очень большим, и им можно пренебречь. Выбор характеристической длины для чисел Нуссельта и Релея является неопределенным, поскольку интенсивность теплообмена для режима теплопроводности главным образом зависит от расстояния d в направление обогрева для режима ламинар1Юго пограничного слоя — от вертикального расстояния й, перпендикулярного направлению обогрева для турбулентного режима не зависит ни от того, ни от другого размера. Для тою чтобы избежать путаницы, характеристическую длину для обоих чисел Ыи и На обозначим с помощью индексов. Если не указано особо, одна сторона полости считается много больше других, так что ее влиянием можно пренебречь. [c.300]

    Хэтфилд и Эдуарде [71] произвели измерения теплоотдачи от квадратных и прямоугольных пластин в воздухе, воде и масле с большим числом Прандтля. Нагретая поверхность обращена вниз. Чтобы исследовать влияние кромок, они получили также экспериментальные данные в случаях, когда к пластинам присоединялись горизонтальные продолжения с приблизительно адиабатическими стенками. Предложено следующее корреляционное соотношение  [c.287]

    Применение трубки Прандтля целесообразно при отсутствии прямолинейных участков трубопроводов достаточной длины, а также в случае воздухопроводов прямоугольного сечения. Схема и размеры стандартной трубки Прандтля представлены на рис. 8.6. Центральное отверстие трубки, направленное навстречу потоку, измеряет полное давление, а боковые отверстия — статическое. Следовательно, если соединить оба отверстия с дифма-нометром, то он измерит динамическое давление. Практически, однако, неточности изготовления трубки Прандтля вызывают небольшое искажение давления. Динамическое давление определяется по формуле [c.207]


Смотреть страницы где упоминается термин Прандтля прямоугольный: [c.123]    [c.101]    [c.101]   
Конвекция Рэлея-Бенара Структуры и динамика (1999) -- [ c.46 , c.51 , c.89 , c.90 , c.101 , c.105 , c.106 , c.110 , c.140 , c.162 , c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Прандтля



© 2024 chem21.info Реклама на сайте