Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гаметы

    Механизм, при помощи которого хромосомы распределяются в половых клетках (гаметах), например при формировании яйцеклетки и сперматозоидов, называется мейозом (гл. I, разд. В, 3). При образовании гамет число хромосом [c.265]

    РИС. 15-27. Мейоз. Деление клетки, приводящее к образованию гаплоидных гамет. [c.266]

    Половое размножение получает окончательное развитие у эукариот, где рост многоклеточного организма начинается со слияния двух гаплоидных гамет — яйцеклетки и сперматозоида. Каждая гамета несет полный набор генетических инструкций образовавшееся после слияния ядер оплодотворенное яйцо (зигота) является диплоидным. Диплоидная клетка содержит два полных набора генетических матриц, полученных от двух совершенно разных родителей. Это дает развивающемуся организму огромные преимущества. В самом деле, если какой-либо ген, полученный от одного из родителей, окажется дефектным, то весьма мало вероятно, что соответствующий ген от второго родителя будет тоже дефектным. Кроме того, половое размножение — это средство смешивания генов, и каждый из нас получает не просто половину генов от матери и половину от отца, но также какие-то гены от дедушек и бабушек, от прадедушек и прабабушек и т. д. [c.39]


    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    СЛИЯНИИ подвижных гамет, немедленно претерпевают мейотическое деление с формированием гаплоидных спор. Хромосома хламидомонады довольно подробно картирована, и этот организм часто используется в биохимических генетических исследованиях. [c.48]

    Половой процесс у эукариот. Первый этап полового размножения --слияние клеток. Две клетки, участвующие в этом процессе, называются гаметами, а образующаяся в результате их слияния клетка — зиготой. У всех эукариотических организмов после слияния гамет происходит слияние их ядер, поэтому ядро зиготы содержит два полных набора генетических детерминантов — по одному из каждого ядра гаметы. [c.50]

    Слияние клеток в ходе полового процесса приводит к удвоению числа хромосом, так как ядро каждой из гамет содержит N хромосом, и после их слияния в ядре зиготы будет соответственно 2К хромосом. Поэтому при переходе от одного поколения, возникшего половым путем, к следующему на каком-то этапе должна произойти редукция числа хромосом, так как число хромосом в ядре не может бесконечно увеличиваться. Действительно, при половом процессе всегда имеется этап, на котором число хромосом уменьшается в два раза, что является результатом особого клеточного деления, называемого мейозом (рис. 1.19). [c.50]

    У животных мейоз происходит непосредственно перед образованием гамет. Иными словами, в клетках каждой особи данного вида на протяжении большей части жизненного цикла содержится 2N хромосом. Такие организмы называют диплоидными. Однако это отнюдь не всеобщее правило у эукариот, размножающихся половым путем. У многих протистов мейоз происходит сразу после образования зиготы, так что эти организмы на протяжении большей части жизненного цикла содержат N хромосом. Такие организмы называют гаплоидными. У многих водорослей и растений, а также у некоторых грибов и простейших происходит чередование гаплоидных и диплоидных поколений. При таком типе жизненного цикла из диплоидной зиготы возникает диплоидная особь, образующая путем мейоза гаплоидные клетки, предназначенные для бесполого размножения. Из каждой такой гаплоидной клетки возникает гаплоид- [c.50]


    Естественное или искусственное скрещивание растений и животных, когда происходит оплодотворение женской гаметы мужской, по сути своей касается переноса и слияния хромосом с последующим возникновением жизнеспособных гибридов Межвидовое скрещивание как правило сопровождается худшими результатами — получаемые гибриды обладают сниженной плодовитостью или могут быть совершенно бесплодными [c.184]

    Скрещивание самок без Р-элемента с самцами, несущими Р-элементы, приводит у гибридов к транспозициям Р-элемента, которые наблюдаются только в клетках зародышевого пути. В потомстве таких гибридов обнаруживается достаточно много мутаций, вызванных внедрением элемента. Эги мутации часто приводят к стерильности потомства. Поэтому линии с Р-элементом и без него выглядят как репродуктивно изолированные, по крайней мере частично. Биологическая изоляция играет огромную роль в процессе эволюции. В этом случае она объясняется на молекулярном уровне изоляция линий вызвана активацией транспозиций Р-элемента, присутствующего в одной из них. Механизм активации транспозиций не расшифрован, однако выяснена причина, почему транспозиции Р-элемента ограничены зародышевыми клетками. Оказалось, что только в клетках—предшественниках гамет — осуществляется такой ход сплайсинга транскрипта Р-элемента, который приведет к образованию непрерывной открытой рамки трансляции, кодирующей транспозазу (рис. 120, а). Ограничение транспозиции зародышевыми клетками, по-видимому, имеет определенный смысл, поскольку обеспечивает выживание особей, несущих гаметы, в которых произошли геномные перестройки вследствие транспозиции Р-элемента. Подобный геномный шок , сопровождающийся высокой частотой мутагенеза, может обеспечить большую степень геномной изменчивости, которая послужит материалом для отбора в процессе эволюции. [c.232]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    Относящийся к нитчатым водорослям иШкг1х образует вегетативные споры с четырьмя жгутиками и гаметы с двумя жгутиками, напоминая [c.48]

    ЭТИМ животные клетки. Диплоидной является только зигота. С другой стороны, клетки на редкость красивой спирогиры (Spirogyra) (рис. 1-9) неподвижны, а амебоидная мужская гамета продвигается по трубочке, соединяющей две спаривающиеся клетки. Такая особенность размножения указывает на связь спирогиры с высшими зелеными растениями. [c.49]

    Некоторые одноклеточные водоросли достигают значительных размеров. Примером может служить Асе1аЬи1аг1а (рис. 1-9), произрастающая в теплых водах Средиземноморья и других тропических морей. Клетка этой водоросли содержит одно ядро, расположенное в ее основании (ризоиде). У взрослой водоросли, жизненный цикл которой длится от 6 месяцев (в лабораторных условиях) до 1 года (в природе), формируется характерного вида вырост (шляпка). По завершении развития этого образования ядро делится примерно на Ю вторичных ядер, которые мигрируют вверх по стебельку и в радиальные лучи шляпки, где образуются цисты. Затем шляпка отмирает и цисты высвобождаются в них происходит мейоз, и образовавшиеся жгутиковые гаметы попарно сливаются, формируя зиготу, из которой вновь вырастает диплоидная водоросль. [c.49]

Рис. 20.7. Неполное сцепление. В данном примере 20% (т. е. 0,1 + 0,1 = 0,2) потомков имеют генотипы, сформировавщиеся в результате рекомбинации(й) между локусами и в процессе мейоза. Частота рекомбинаций не зависит от генотипов родителей. Родитель, гомозиготный по двум рецессивным признакам, производит только один тип гамет даже в случае рекомбинации. В анализирующем скрещивании рекомбинантные продукты мейоза проявляются у потомков фенотипически. Рис. 20.7. <a href="/info/200267">Неполное сцепление</a>. В данном примере 20% (т. е. 0,1 + 0,1 = 0,2) потомков имеют генотипы, сформировавщиеся в результате рекомбинации(й) между локусами и в процессе мейоза. <a href="/info/33362">Частота рекомбинаций</a> не зависит от генотипов родителей. Родитель, <a href="/info/700477">гомозиготный</a> по двум <a href="/info/103201">рецессивным признакам</a>, производит только один тип гамет даже в случае рекомбинации. В <a href="/info/1277077">анализирующем скрещивании</a> рекомбинантные продукты мейоза проявляются у потомков фенотипически.
    При изучении сцепления рекомбинационный индекс обозначается греческой буквой тета (0). В методе Мортона сравнивается вероятность Ь в) того, что у братьев и сестер (сибсов) два локуса сцеплены (т. е. локализованы на одной хромосоме и находятся близко друг от друга), с вероятностью Ц0,50) того, что два локуса не сцеплены (т. е. находятся на разных хромосомах или далеко друг от друга в пределах одной хромосомы), для любого рекомбинационного индекса в. В случае сцепления, поскольку рекомбинационный индекс неизвестен, он может принимать любое значение в интервале от О до 0,5 (О < 0 < 0,50). Если же два локуса распределяются независимо, то 0 = 0,50 по определению. Другими словами, в том случае, когда половина гамет, полученных от дигетерозиготного родителя, содержит новые генетические комбинации, два локуса находятся либо на негомологичных хромосомах, либо настолько далеко друг от друга на одной хромосоме, что это выглядит так, будто они расположены на разных хромосомах. Следовательно, если Ь в) = 1(0,50), то два локуса не сцеплены. Десятичный логарифм отношения этих двух вероятностей, т.е. og[L 9 )/i(0,50)], представляет собой логарифм соотношения шансов (log-of-odds ratio), называемый лод-баллом (LOD). Лодд-балл обозначают буквой Z Z 9) — это лод-балл для данного значения в, где О 4 в < 0,50. [c.447]


    Гамета (Gamete) Репродуктивная гаплоидная клетка многоклеточного организма. [c.545]

    Независимое распределение геиов (Independent assortment) Распределение генов, локализованных на разных хромосомах, по гаплоидным гаметам с образованием всех возможных комбинаций генов. Лежит в основе закона Менделя о независимом распределении признаков. [c.554]

    Полное сцепление ( omplete linkage) Совместное наследование двух или более соседних генных локусов в хромосоме. Проявляется отсутствием рекомбинаций между ними и стабильным попаданием в одну гамету при митозе. [c.557]

    Хемотаксис происходит и в нематодах [5] — червях, нервная система которых состоит из 300 нервных клеток. В такой простой системе можно исследовать поведение, и, используя мутантные организмы, определить его клеточную и молекулярную основу. Рассмотрим растения в качестве доказательства того, что универсальные принципы рецепции стимулов и обработки сигналов были заложены еще на ранних стадиях эволюции хемотаксис наблюдается и на гаметах бурых водорослей [6], которые узнают половые аттрактанты в морской воде и плывут к ним. Здесь же следует упомянуть слизистые грибы Si tyostelium (118Со1йеит, рост колоний которых регулируется сАМР, высвобождающегося в среду. [c.359]

    У низших грибов фаза полового размножения начинается с образования половых клеток, или гамет. Если гаметы, происходящие от мужской и женской родительских клеток, морфологически неразличимы, их называют изогаметами. Гаметы образуются часто в особых морфологически дифференцированных клетках — гаметангиях. Если эти последние различны по своей форме, то мужские гаметангии называют антери-диями, а женские — оогониями. [c.57]

    По способу переноса гамет и осуществления плазмогамии различают несколько типов грибов. У низших, преимущественно водных, грибов обе гаметы подвижны (планогаметы), и слияние их происходит вне гаметангиев. У оомицетов подвижна только мужская гамета она проникает в оогоний и оплодотворяет яйцеклетку. Для зигомицетов характерна гаметангиогамия — слияние целых соприкасающихся друг с другом многоядерных гаметангиев в многоядерную ценозиготу. [c.57]

    К низшим грибам относится большая группа грибов, вегетативные тела которых (даже при сильном ветвлении гиф) не имеют перегородок и потому многоядерны. Такой таллом называют ценоцитным. У большинства низших грибов споры образуются в спорангиях. Примитивные формы, приспособившиеся к жизни в воде, образуют подвижные споры и гаметы. При переходе от водных форм к более совершенным земноводным и наземным подвижные стадии встречаются только изредка. [c.60]

    Грибы размножаются вегетативным, т. е. бесполым путем, но у них есть и половое размножение. Бесполое раампожекке возможно- спорами, почкованием клеток, фрагментацией гиф с образованием оидий или артроспор, а также в результате механического разрыва мицелия. Грибам свойственна высокая регенеративная способность любой обрывок мицелия в благоприятных условиях дает рост, превращаясь в организм следующего поколения. Половое размножение грибов происходит в результате слияния двух клеток — гамет (плазмогамия), сопро- [c.72]


Смотреть страницы где упоминается термин Гаметы: [c.861]    [c.862]    [c.26]    [c.367]    [c.368]    [c.265]    [c.365]    [c.43]    [c.554]    [c.444]    [c.444]    [c.550]    [c.26]    [c.42]    [c.44]    [c.53]    [c.55]    [c.114]    [c.30]    [c.51]    [c.180]    [c.493]    [c.73]    [c.78]   
Смотреть главы в:

Молекулярная биология клетки Том4 -> Гаметы

Молекулярная биология клетки Т.3 Изд.2 -> Гаметы


Биохимия Том 3 (1980) -- [ c.39 ]

Молекулярная биология клетки Том5 (1987) -- [ c.0 ]

Общая микробиология (1987) -- [ c.24 , c.157 , c.162 , c.163 , c.453 ]

Химия биологически активных природных соединений (1970) -- [ c.471 ]

Современная генетика Т.3 (1988) -- [ c.112 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.25 ]

Популяционная биология и эволюция (1982) -- [ c.56 , c.57 , c.78 ]

Цитология растений Изд.4 (1987) -- [ c.31 , c.107 , c.133 , c.140 , c.160 ]

Биология развития (1979) -- [ c.158 , c.164 ]

Искусственные генетические системы Т.1 (2004) -- [ c.14 ]

Гены и геномы Т 2 (1998) -- [ c.17 , c.148 ]

Основы математической генетики (1982) -- [ c.24 , c.250 , c.499 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте