Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточное деление

    Стабильное поддержание любого репликона требует не только согласования его репликации с клеточным делением, но и упорядоченного распределения молекул ДНК по дочерним клеткам. Считается, что правильная сегрегация достигается у бактерий за счет прикрепления ДНК к мембране, причем пространственная организация [c.68]

    Они располагаются не беспорядочно, а по принципу комплементарных (взаимно дополняющих) пар аденин против тимина, гуанин против цитозина. В результате в процессе клеточного деления возникают две новые двойные спирали, являющиеся точными копиями исходной каждая половинка разделившейся клетки получает свой набор ДНК, идентичный набору материнской клетки. [c.353]


    Что происходит во время митоза с митохондриями Они, как и хлоропласты в растительных клетках, делятся. Следовательно, на опреде- ленных стадиях клеточного цикла в этих органеллах происходит репликация ДНК- По крайней мере в ряде случаев деление митохондрий так связано с клеточным делением, что среднее число митохондрий в расчете на дочерние клетки остается строго постоянным. Аналогичное яв- ление наблюдается и в клетках низших организмов, содержащих водо- [c.39]

    Наиболее существенные повреждения клетки возникают в ядре, основной молекулой которого является ДНК. Ядро у млекопитающих проходит четыре фазы деления из них наиболее чувствителен к облучению митоз, точнее его первая стадия — поздняя профаза. Клетки, которые в момент облучения оказываются в этой стадии, не могут вступить в митоз, что проявляется первичным снижением митотической активности спустя 2 ч после облучения. Клетки, облученные в более поздних стадиях митоза, или завершают цикл деления без каких-либо нарушений, или в результате инверсии обменных процессов возвращаются в профазу. Речь идет о радиационной синхронизации митозов, когда клетки с запозданием снова начинают делиться и производят чисто внешнюю компенсацию первоначального снижения митотической активности. Нарушения ДНК могут вести к атипическому течению клеточного деления и появлению хромосомных аберраций. Неделящиеся клет- [c.16]

    Как же используется эта информация В момент клеточного деления двойная спираль начинает раскручиваться, разделяясь [c.352]

    Прежде чем перейти к рассмотрению генетики высших РИС. 15-25. Клеточный цикл. Указанные вре- организмов, напомним вкратце мена характерны для клеток млекопитающих. некоторые Сведения о процес-Для клеток других организмов они могут быть сах клеточного деления, из- [c.264]

    Процесс развития животного из оплодотворенного яйца — одно из наиболее замечательных биологических явлений. Из первых, очень сходных между собой эмбриональных клеток в ходе всего нескольких клеточных делений возникают дифференцированные органы и ткани, такие, как печень, мозг, почки, кожа и эритроциты. Дифференцированные клетки характеризуются, как правило, высокоспециализированными биохимическими свойствами. Так, эритроциты содержат гемоглобин, тогда как в мышечных клетках в больших количествах образуются миозин и актин. В эндокринных клетках поджелудочной железы синтезируются инсулин и глюкагон, а в экзокринных-—пищеварительные ферменты, которые секретируются в пищеварительный тракт. В целом считается, что в клетках специализированных тканей одновременно транскрибируется не более 10% общего количества генов (исключение составляет ткань мозга см. разд. Б, 8). Методом химического анализа четко установлено, что специализированные клетки содержат нормальное количество ДНК, т. е. полный набор генов, но 90% этого количества не функционирует. [c.352]


    Современные теории развития принимают существование определенных генетических программ и рассматривают весь процесс развития как результат сочетания реакций клетки на воздействие гормонов и индукторов с влиянием внутренней генетической программы [179]. В настоящее время можно высказать только первые догадки о природе внутренних программ. Все же были предложены очень разумные схемы, согласно которым часы развития считают число клеточных делений и в соответствующий момент выключают одни гены и включают другие [180]. Были высказаны конкретные предположения относительно химизма таких часов. Так, указывалось, что вопреки представлению о высокой стабильности ДНК это соединение легко мутирует под влиянием химических факторов. Можно допустить существование особых ферментов, направленно модифицирующих ДНК в определенных участках. В самом деле, известно, что в ДНК содержится определенное количество дополнительных метильных групп, которыми, например, могут быть маркированы отдельные участки (гл. 2, разд. Г, 8). Другая возможность — это дезаминирование содержащих аминогруппу оснований в определенных участках, например в палиндромных последовательностях. [c.361]

    С другой стороны, в некоторых клетках процесс необратимой дифференцировки сопряжен с потерей части генома. Крайним выражением этой ситуации являются эритроциты человека, полностью утратившие ядро. В других клетках разрушаются отдельные хромосомы. Возможны и такие случаи, когда хромосома или ее часть необратимо инактивируется и остается в клетке в виде компактного образования — гетерохроматина. Этим термином обозначают интенсивно окрашивающиеся области клеточного ядра. Некоторые гетерохроматины содержат многократно повторяющиеся последовательности (гл. 15, разд. И, 1,6), но в отдельных гетерохроматиновых областях обнаруживаются группы инактивированных генов. Чрезвычайно интересен случай полной инактивации одной из двух Х-хромосом в клетках самок млекопитающих 1[181]. Вся хромосома при этом выглядит как гетерохроматин. Инактивация происходит на ранней стадии эмбрионального развития и захватывает ту или другую Х-хромосому по принципу случайности в одних клетках инактивируется материнская Х-хромосома, в других—отцовская. Однако при дальнейших клеточных делениях одна и та же хромосома остается инактивированной во всем клоне клеток. В результате в организме особей женского пола возникает мозаицизм по гетерозиготным генам Х-хромосом. [c.363]

    Сложность иммунного ответа связана отчасти с тем, что другие клетки, в особенности Т-лимфоциты и макрофаги, изменяют реакцию В-клеток на антиген. В отсутствие активирующего действия антигена процесс деления большей части лимфоцитов заторможен. Т-клетки, а они представлены по меньшей мере тремя типами, могут либо стимулировать клеточное деление после связывания антигена, либо продолжать подавлять его. Видимо, торможение имеет место в том случае, когда иммунная система узнает о наличии в антигене детерминанты, присутствующей также на поверхностях собственных клеток организма. Совершенно очевидно, что различение своих и чужих антигенов чрезвычайно важно для иммунной системы. Аналогично тому как нервная система находится обычно в заторможенном состоянии и только иногда по ней осуществляется проведение потока импульсов, так и иммунная система в основном ингибирована и лишь в определенных случаях развивается клон плазматических клеток. Торможение иммунологической активности обусловлено отчасти синтезом антител против других антител, а именно против антител, функционирующих в качестве рецепторов на поверхности В-клеток. [c.366]

    Пол, хромосомы и клеточное деление [c.39]

    Процесс клеточного деления, называемый митозом, начинает и завершает клеточный цикл, в ходе которого делится отдельная диплоидная клетка. С биохимической точки зрения митоз представляет собой удвоение числа генетических матриц с последующим формированием из них компактных образований — хромосом. Последние распределяются поровну между двумя новыми клетками (подробно этот процесс описан в гл. 15, разд. Г.9). [c.39]

    ИЗ двух антипараллельных полинуклеотидных цепей. Наиболее важной особенностью предложенной структуры было спаривание оснований противоположных цепочек путем образования между ними водородных связей. Водородные связи (на рис. 2-21 они указаны пунктирными стрелками) могут образоваться лишь в том случае, если всюду вдоль структуры ДНК аденин образует пару с тимином (две водородные связи), а цитозин — с гуанином (три связи). Таким образом, последовательность нуклеотидов в одной цепи оказывается комплементарной, но не идентичной последовательности в другой цепи. Далее почти сразу же стало очевидно, что последовательность оснований в цепи ДНК содержит в себе закодированную генетическую информацию. Комплементарность двух цепей приводит к очень простому механизму репликации генов на протяжении всех клеточных делений. По этому механизму две цепи ДНК разделяются и вдоль каждой из них синтезируется новая комплементарная цепь, что дает в результате две молекулы ДНК, по одной на каждую из двух дочерних клеток. Принципиальную правильность этой схемы сейчас уже можно считать доказанной. [c.131]


    По мере роста ракообразные периодически сбрасывают твердый покров, поскольку в отличие от тканей, увеличивающихся в результате клеточного деления, жесткий полимер сохраняет постоянные размеры. А хитин, например, панцирь крабов, в концентрированной соляной кислоте при гидролизе дает аииносахариды. [c.266]

    При каждом клеточном делении каждая молекула ДНК должна удваиваться, т. е. на каждом ориджине должен происходить в точности один акт инициацни репликации. В противном случае постепенно происходила бы утеря репликона или его бесконтрольное накопление. Более того, даже если репликон удваивается в среднем точно один раз на каждое клеточное деление, возможны существенные вариации количества копий этого репликона вокруг среднего значения в разных клетках бактериальной популяции. Такие вариации недопустимы, так как тоже в конце концов ведут к потере репликона. Таким образом, к регуляции репликации предъявляются достаточно жесткие требования регуляторная система должна чувствовать отклонения в обе стороны от среднего числа копий данного репликона и соответствующим образом менять частоту инициации на ориджине. Очевидно, что частота инициации должна быть согласована также со скоростью роста клеток. [c.63]

    Инициация репликации строго регулируется. Полиреплнконная организация требует, чтобы в каждом цикле клеточного деления каждый ориджин сработал только один раз, в противном случае на хромосоме образуются разветвленные структуры. Для дрожжевых [c.69]

    Участвует в репарации и реко.мбинации. Мутагенез, реактивация Уэйгла Подавление клеточного деления (фнламентацня) Выключение 505-ответа Ослабление рестрикции (с.ч. гл. VI) Прекращение дыхания [c.79]

    Обычно бактерии размножаются простым клеточным делением, т. е. количество ДНК в хромосоме удваивается, клетки делятся и дочерние клетки получают идентичные хромосомы. Однако, как показали в 1946 г. 1едерберг и Татум [13а], бактерии могут размножаться и половым путем. Прямых данных о спаривании у бактерий первоначально не было, однако было показано, что если смешать клетки двух различных мутант-лых штаммов К-12 Е.соИ и выращивать их совместно в течение нескольких поколений, то некоторые бактерии вновь обретут способность к росту на минимальной среде. Поскольку каждый из этих штаммов содержал по одному дефектному гену, образование особи, не несущей ни одного из этих дефектов, могло произойти лишь в результате комбинирования генетического материала обеих штаммов. Именно эти опыты по- служили основанием для вывода о существовании у бактерий конъюгации. В дальнейшем было показано, что в процессе конъюгации может происходить истинная генетическая рекомбинация. Это означает, что гены двух спаривающихся клеток могут быть интегрированы с образованием единой цепи бактериальной ДНК- [c.189]

    Процессы метилирования несомненно участвуют в инактивации одной из двух Х-хромосом в клетках млекопитающих. Неактивное состояние одной из двух Х-хромосом, возникающее в раннем развитии эмбриона, цитологически обнаруживается по наличию компактного гетерохроматического тельца Барра. Это неактивное состояние наследуется в клеточных поколениях, а реактивация Х-хромосомы происходит при образовании герминальных клеток. Путем деметилирования с помощью 5-азацитидина также удавалось активировать гены неактивной Х-хромосомы. По-видимому, инициация инактивации Х-хромосомы обеспечивается взаимодействием со специфическими белками, а метилирование — это вторичный процесс, закрепляющий неактивное состояние Х-хромосомы в последующих клеточных делениях. [c.220]

    С механизмом клеточной дифференцировки связан интересный вопрос сохраняется ли на уровне структуры хроматина память об активном или неактивном состоянии гена при клеточном делении и транскрипции При клеточном делении хроматин, видимо, сохраняет особенности своей структуры, например гиперчувстви-тельные участки в хроматине некоторых генов сохраняются в метафазных хромосомах в тех же местах, что и в интерфазном хроматине. Очевидно, это определяется тем, что регуляторные белки, связанные с промоторными участками генов, ассоциированы с ДНК и в составе метафазной хромосомы. Однако судьба регуляторных белков в процессе репликации ДНК неизвестна. [c.258]

    Еще один возможный механиз.м сохранения информации об активности генов в ходе клеточного деления — это метилирование ДНК- У прокариот метилаза узнает полуметилированный по одной цепи ДНК сайт после репликации и восстанавливает общую картину метилирования. Возможно, сходные механизмы действуют у эукариот. Ряд данных указывают на то, что ингибиторы метилирования ДНК активируют многие гены после одного или нескольких раундов репликации. В растительных клетках метилирование регуляторных участков некоторых генов приводит к их полному выключению на протяжении многих поколений. Это явление трудно отличить от истинной мутации. [c.258]

    Полиамины составляют ряд родственных соединений, частично образующихся из аргинина они присутствуют во всех клетках в относительно больших количествах (зачастую в миллимолярных концентрациях). Содержание полиаминов в клетках часто находится в стехио-метрическом соотношении с содержанием РНК. Однако у Т-четных бактериофагов н большинства бактерий содержание полиаминов ассо-ииировано с ДНК. Полиаминам приписывают множество функций. Они могут в известной мере замещать клеточный К" " и M.g + и, видимо, играют существенную регуляторную роль в процессах синтеза нуклеиновых кислот и белков [36]. Спермидин, по всей вероятности, играет специфическую роль в процессе клеточного деления [40а]. Полиамины могут взаимодействовать с двойной спиралью нуклеиновых кислот, образуя мостики между полинуклеотидными цепями в этом случае положительно заряженные аминогруппы взаимодействуют с отрицательно заряженными фосфатами остова нуклеиновых кислот [40]. В одной модели (предложенной Тсубои [40Ь]) тетраметиленовая часть молекулы полиамина укладывается в малой бороздке, связывая три пары оснований, а триметиленовые группы (одна в спермидине и две в спермине) образуют мостики между смежными фосфатными группами [c.99]

    Благодаря относительно простому строению некоторые ткани растений служат удобным объектом изучения процесса дифференцировки. Слой камбия в стебле (рис. 1-12) постоянно дифференцируется с образованием флоемы из наружно расположенных клеток и ксилемы из клеток, расположенных со стороны сердцевины стебля. В то же время часть камбиальных клеток сохраняется недифференцированными. Фактически при каждом клеточном делении одна дочерняя клетка подвергается дифференцировке, тогда как другая остается малодифференцированной камбиальной клеткой. Такой способ постоянной дифференцировки стволовых клеток, сохраняющих постоянные свойства, широко распространен как у растений, так и у животных. По-видимому, направление дифференцировки камбиальных клеток зависит от химической природы сигналов, которые идут от клеток, прилегающих к камбию с наружной или внутренней стороны. Известно, что к числу факторов, индуцирующих дифференцировку, относятся сахароза, ауксин и цитокинины. [c.354]

    ХИТИН. Ракообразные имеют прочный твердый наружный скелет,, состоящий в основном из хитина — полимера 2-ацетамидо-2-дезокси-в-глю-козы. По мере роста ракообразные периодически сбрасывают его во время липьки, так как в отличие от тканей, увеличивающихся в результате клеточного деления, жесткий полимер сохраняет постоянные размеры. Хитин не только выполняет опорные функции, но и играет роль кожицы, регулирующей поступление или потерю воды. Интересно, что хитин ракообразных отличается от хитина насекомых. В первом случае этот полимер пропитан карбонатом кальция и другими солями, во втором — смесью веществ под общим названием насекомого воска . И тут и там происходит заполнение пор [c.462]

    Для А. т. воспл. 125°С, для пылевоздушной смеси 870°С ниж. КПВ 10 г/м ЛД50 2,1 г/кг (мыши, перорально). А. вызывает резкое увеличение клеточного деления у растений образовавшиеся клетки дают начало новым тканям, имеющим хотя и измененное, но здоровое развитие. На животные ткани А. не действует. [c.221]

    На регуляцию морфогенеза существенно влияет качество света. Показано (Л. Коппель, 1992), что морфогенный каллус образуется чаще на синем свету, чем на белом или красном. Изменения на уровне индивидуальных белков во время реализации морфогенетической программы в культуре тканей позволили говоррггь о существовании белков развития. Однако отсутствие специфических тестов на эти белки не позволяет их выяврггь. Вместе с тем при использовании гибридов, продуцирующих моноклональные антитела на мембранные белки соматических зародышей, удалось выявить полипептид с молекулярной массой 45 кДа, который встречается в ядре нескольких видов растений и возможно участвует в регуляции клеточного деления (Г. Смит и др., 1988). В настоящее время большое внимание уделяется генетическому аспекту морфогенеза, изучению соматического эмбриогенеза как генетически наследуемого признака. Роль основного двигателя процесса развития отводится дифференциальной активности генов. Предполагается, что гены, контролирующие соматический эмбриогенез, начинают экспрессироваться в критические периоды развития эмбриоидов (H.A.Моисеева, 1991). [c.176]

    Ингибиторы клеточного деления (митоза), напр. N-apилкapбaмaты и динитроанилины вносят их, как правило, в почву, где Г. подавляют прорастание семян и рост корней. [c.525]

    П.-компоненты первичных клеточных стенок растений, где находятся в комплексе с гемицеллюлозами и целлюлозой. Они играют важную роль в клеточном делении и росте молодых клеток, в поддержании водного и солевого баланса нелигнифицир. тканей. В значит, кол-вах П. накапливаются в сочных плодах и др. запасающих органах растений. Ряд полисахаридов, по своей локглизации в растении относимых к камедям или слизям, по хим. природе являются типичными П. [c.452]

    З-индолилмасляную к-ту. Для стимл. тирования прорастания картофеля иногда используют гибберелловую к-ту (или ее смесь с тиомочевиной) для задержки прорастания картофеля и лука-нек-рые гербициды, ингибиторы клеточного деления (напр., ИФК, хлор-ИФК), гидразид малеиновой к-ты (МГ), а также этефон и метиловый эфир а-нафтил-уксусной к-ты. МГ часто применяют для предотвращения образования боковых побегов у растений табака, иногда-в свекловодстве. [c.219]

    Обязательными компонентами питательных сред должны быть ауксины, вызывающие дедифференцировку клеток экспланта, и ци-токинины, индущ1рующие клеточные деления. При изменении соотношения между этими фитогормонами или при добавлении других фитогормонов могуг бьггь вызваны разные трпты морфогенеза. [c.162]

    Как описать скорость роста клеток Рассмотрим культуру бактерий, находящуюся в логарифмической фазе роста. Каждая клетка культуры Делится спустя определенный промежуток времени (время генерации), который в отдельных случаях, например у Е. oli, составляет всего 20 мин >. Если данный объем культуры содержит в начальный момент времени No бактерий, то по прошествии п клеточных делений число бактерий составит [c.39]


Смотреть страницы где упоминается термин Клеточное деление: [c.190]    [c.219]    [c.735]    [c.460]    [c.687]    [c.266]    [c.362]    [c.215]    [c.165]    [c.39]    [c.381]    [c.114]    [c.190]    [c.219]   
Смотреть главы в:

Молекулярная биология клетки Том 3 -> Клеточное деление


Молекулярная биология клетки Том5 (1987) -- [ c.39 , c.121 , c.139 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.0 ]

Общая микробиология (1987) -- [ c.203 ]

Микробиология (2006) -- [ c.64 , c.237 ]

Гены (1987) -- [ c.0 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.0 ]

Жизнь зеленого растения (1983) -- [ c.33 , c.75 , c.86 , c.273 , c.285 , c.294 , c.306 ]

Цитология растений Изд.4 (1987) -- [ c.5 , c.96 ]

Эволюция без отбора Автоэволюция формы и функции (1981) -- [ c.94 , c.179 ]

Эволюция без отбора (1981) -- [ c.94 , c.179 ]

Гены и геномы Т 2 (1998) -- [ c.16 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.237 , c.238 , c.239 , c.240 , c.241 , c.242 , c.243 , c.244 , c.245 , c.246 , c.247 , c.248 , c.249 , c.250 , c.251 , c.252 , c.253 , c.254 , c.255 , c.256 , c.257 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Делении



© 2025 chem21.info Реклама на сайте