Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гаплоидные образование

Рис. 2.3. Схема мейоза. Мейоз приводит к перекомбинированию отцовских и материнских генов и к уменьшению вдвое числа хромосом. Сначала происходит конъюгация гомологичных хромосом (А), и гомологи обмениваются участками (кроссинговер) в результате двукратного образования веретен (Б и В) хромосомы расходятся при этом расходятся также и гомологичные хромосомы (В) в результате получаются четыре клетки с гаплоидными ядрами (Г). Рис. 2.3. <a href="/info/1324575">Схема мейоза</a>. <a href="/info/509927">Мейоз</a> приводит к перекомбинированию отцовских и <a href="/info/1354107">материнских генов</a> и к уменьшению вдвое <a href="/info/3579">числа</a> хромосом. Сначала происходит <a href="/info/33027">конъюгация</a> гомологичных хромосом (А), и гомологи обмениваются участками (<a href="/info/33034">кроссинговер</a>) в результате двукратного образования веретен (Б и В) хромосомы расходятся при этом расходятся также и <a href="/info/509331">гомологичные хромосомы</a> (В) в <a href="/info/1621062">результате получаются</a> четыре клетки с гаплоидными ядрами (Г).

    У животных мейоз происходит непосредственно перед образованием гамет. Иными словами, в клетках каждой особи данного вида на протяжении большей части жизненного цикла содержится 2N хромосом. Такие организмы называют диплоидными. Однако это отнюдь не всеобщее правило у эукариот, размножающихся половым путем. У многих протистов мейоз происходит сразу после образования зиготы, так что эти организмы на протяжении большей части жизненного цикла содержат N хромосом. Такие организмы называют гаплоидными. У многих водорослей и растений, а также у некоторых грибов и простейших происходит чередование гаплоидных и диплоидных поколений. При таком типе жизненного цикла из диплоидной зиготы возникает диплоидная особь, образующая путем мейоза гаплоидные клетки, предназначенные для бесполого размножения. Из каждой такой гаплоидной клетки возникает гаплоид- [c.50]

    РИС. 15-27. Мейоз. Деление клетки, приводящее к образованию гаплоидных гамет. [c.266]

    У человека и высших животных в результате мейоза образуются гаметы— яйцеклетка и сперматозоиды. При их слиянии возникает снова диплоидное ядро, из которого путем последовательных митозов развивается взрослый организм. Стадия мейоза характерна для жизненного цикла всех эукариот, однако отнюдь не всегда этот процесс протекает в период, аналогичный соответствующему моменту жизненного цикла человека. Так, клетки многих простейших и грибов обычно гаплоидны. После слияния двух гаплоидных ядер с образованием диплоидной клетки быстро наступает мейотическое деление, в результате которого вновь возникают гаплоидные особи. Чередование гаплоидных и диплоидных фаз жизненного цикла часто встречается у низших растений и примитивных животных. Например, гаметы папоротника падают на почву и [c.42]

    Бактерии, как правило, размножаются путем деления надвое (бинарное деление). Клетка удлиняется, а затем происходит образование поперечной перегородки, постепенно врастающей снаружи внутрь (или перетяжки), после чего дочерние клетки расходятся. У многих бактерий, однако, после деления в определенных условиях среды дочерние клетки некоторое время остаются связанными между собой, образуя характерные группы. При этом в зависимости от ориентации плоскостей деления и числа делений возникают различные формы, например у сферических бактерий — пары клеток (диплококки), цепочки (стрептококки), пластинки или же пакеты (сарцины и стафилококки). Палочковидные бактерии также могут образовывать пары или цепочки клеток. Размножение почкованием встречается у прокариот как исключение. Делению клетки предшествует удвоение, или репликация, бактериальной хромосомы. Однако диплоидная фаза в клеточном цикле ограничена очень короткой стадией. Таким образом, прокариоты гаплоидные организмы. [c.12]


    На дикариофитпом мицелии вырастают в типичных случаях сложные плодовые тела. Это хорошо известные шляпочные грибы, трутовики и т. п. Образование базидии происходит в специальном слое такого плодового тела — в так называемом гимении, который состоит из базидии и стерильных гиф (парафиз и цистид). Базидия образуется в результате увеличения концевой клетки два ядра этой клетки сливаются (кариогамия). Затем ядро зиготы претерпевает редукционное деление с образованием четырех гаплоидных ядер. Одновременно формируются четыре стеригмы с зачатками базидиоспор, в которые проникают ядра. [c.73]

    Следующая фаза развития, называемая созреванием яйцеклетки, начинается лишь с наступлением половой зрелости. Под влиянием гормонов (см. ниже) происходит первое деление мейоза хромосомы снова конденсируются, ядерная оболочка исчезает (этот момент обыкновенно принимают за начало созревания), и реплицированные гомологичные хромосомы расходятся в дочерние ядра, каждое из которых содержит теперь половину исходного числа хромосом (одиако эти хромосомы отличаются от обычных тем, что состоят из двух сестринских хроматид). Но цитоплазма делится очень несимметрично, так что получаются два ооцнта второго порядка, резко различающихся по величине один представлен маленьким полярным тельцем, а другой-большой клеткой, в которой заложены все возможности для развития. И наконец, происходит второе деление мейоза две сестринские хроматиды каждой хромосомы, полученной при первом делении, отделяются друг от друга в результате процесса, сходного с анафазой митоза, с той разницей, что теперь имеется лишь половина обычного диплоидного числа хромосом. После расхождения хромосом цитоплазма большого ооцита второго порядка вновь делится асимметрично, что ведет к образованию зрелой яйцеклетки и еще одного маленького полярного тельца при этом обе клетки получают гаплоидное число одиночных хромосом. Благодаря двум несимметричным делениям цитоплазмы ооциты сохраняют большую величину, хотя они и претерпели два деления мейоза. Все полярные тельца очень малы, и они постепенно дегенерируют. На какой-то стадии описанного процесса, различной у разных видов, яйцеклетка освобождается из яичника (происходит овуляция). [c.29]

    У диплоидного организма имеются две копии каждого гена однако для выживания и нормальной жизнедеятельности в большинстве случаев бывает достаточно одной копии. Мутация, нарушающая функцию жизненно важного гена, для гаплоидного организма легальна, но она может оказаться безвредной для диплоида, если затронута лишь одна из двух копий гена. Чаще всего в геномах диплоидных организмов содержится много таких рецессивных ле-талей. Однако половое размножение накладывает ограничение иа их количество. Если обе родительские особи несут рецессивную летальную мутацию в одном и том же гене, их потомок может унаследовать две мутантные копии этого гена и не получить ни одной нормальной такой организм погибнет, и вместе с ним будут утрачены мутантные копии гена. Чем больше распространен в популяции мутантный ген, тем быстрее он будет элиминироваться. В результате устанавливается равновесие между скоростью элиминации мутантного аллеля и скоростью его образования за счет новых мутаций. При равновесии мутантный аллель встречается в популяции достаточно редко (хотя и значительно чаще, чем это было бы у гаплоидного организма) подавляющее большинство особей будут действительно диплоидными по данному локусу-у них будут две функционирующие копии гена. Сходным образом обстоит дело и с теми рецессивными мутациями, которые просто вредны, но не легальны. [c.11]

    Конечные этапы образования хлорофилла растениями, зеленеющими в полной темноте, не известны. У высших растений особенно интересно образование хлорофилла в семядоле неосвещенных проростков хвойных показано, что в данном случае гаплоидная ткань семени, развивающегося из мегаспоры, продуцирует какой-то фактор, способствующий появлению зеленой окраски. [c.453]

    Путем последовательных митотических делений из одной оплодотворенной яйцеклетки формируется взрослый организм. Для формирования организма человека достаточно всего 40—50 последовательных митозов. Однако образование гамет (половых клеток), имеющих гаплоидный набор хромосом, осуществляется путем мейоза — специального процесса, в ходе которого число хромосом делится надвое. При мейозе одна хромосома из каждой гомологичной пары, содержащейся в диплоидной клетке, переходит в одну из образующихся гамет. В организме, подобном As aris, который содержит единственную пару хромосом, гамета получает хромосому либо от отцовского организма, либо от материнского, но не от обоих сразу. В организмах, имеющих несколько пар хромосом, хромосомы при мейозе распределяются случайным образом, так что в каждой гамете имеются как материнские, так и отцовские хромосомы. [c.40]

    Нейроспора может размножаться и посредством гаплоидных спор — конидий. Гаплоидные мицелии представлены двумя типами, и конидии или мицелии одного типа способны оплодотворять клетки другого типа, (находящиеся в специальном образовании — протоперитециуме) с образованием зигот. Последние немедленно проходят мейоз и митоз, форми-. руя восемь аскоспор. [c.47]

    Семена растений состоят из трех четко различающихся частей. Зародыш развивается из зиготы, образованной в результате слияния ядра спермия, происходящего из пыльцевой клетки, с ядром яйцеклетки. Оплодотворенная яйцеклетка у голосеменных окружена питательным слоем, или эндоспермом, происходящим из той же гаметофитной ткани, что и яйцеклетка, и потому гаплоидным. У покрытосеменных в спермин формируются два ядра одно из них оплодотворяет яйцеклетку, тогда как другое сливается с двумя гаплоидными полярными ядрами, образующимися в женском гаметофите. (Эти полярные ядра формируются в ходе того же митотического деления, при котором образуется яйцеклетка.) В результате развивается триплоидный (Зп) эндосперм. [c.63]


    Независимое распределение геиов (Independent assortment) Распределение генов, локализованных на разных хромосомах, по гаплоидным гаметам с образованием всех возможных комбинаций генов. Лежит в основе закона Менделя о независимом распределении признаков. [c.554]

    Половое размножение у грибов так же, как у других эукариот, включает слияние двух ядер. Такое слияние ядер у разных грибов происходит через различные промежутки времени после первого контакта между родительскими клетками. В процессе полового размножения можно различить три фазы. Первая фаза плазмогамия связана с соединением двух протопластов. Возникшая в результате этого клетка содержит два ядра. Эта пара ядер (дикарион) не обязательно сливается сразу же. Во время последующих делений клетки могут оставаться в дикариотической фазе. Оба ядра делятся при этом одновременно (сопряженное деление). Лишь позднее, часто только после образования плодового тела, происходит слияние обоих гаплоидных ядер (кариогамия) с образованием диплоидного ядра зиготы. За кариогамией следует мейоз, или редукционное деление, при котором число хромосом умень- [c.56]

    Теперь образование гаплоидных ядер гамет может очень просто происходить в результате второго делеппя мейоза, при котором хромосомы выстраиваются на экваторе нового веретена и без дальнейшей репликации ДНК сестринские хроматиды отделяются друг от друга, как при обычном мнтозе, образуя клетки с гаплоидщ1м набором ДНК. Таким образом, мейоз состоит из двух клеточных делений, следующих за единственной фазой удвоения хромосом, так что из каждой клетки, вступающей в мейоз, получаются в итоге четыре гаплоидные клетки. [c.17]

    В жизненном цикле нейроспоры преобладает гаплофаза, тогда как диплофаза заканчивается сразу после мейоза и образования так называемых аскоспор. Каждая диплоидная материнская клетка спор образует 8 гаплоидных аскоспор, которые можно выбрать из сумки по одной. При прорастании аскоспор образуется гаплоидный организм, и свойства этого гаплоида проявляются непосредственно, без всяких нарушений, связанных с оплодотворением и доминированием. Доминирование, конечно, может иметь место только у организмов, содержащих по две хромосомы каждого типа. [c.230]

    Гетерокарионы, у которых в одной клетке сосуществуют генетически разные ядра, могут быть получены либо путем слияния (анастомоза) гиф разных мицелиев, либо в результате образования мутантного ядра в мицелии. Слияние ядер в гете-рокарионе происходит с низкой частотой (10 —Ю " ), но этот процесс ускоряется под действием (-t )-камфоры или УФ-све та. Митотическую рекомбинацию в диплоидном ядре можно индуцировать с помощью химических и физических воздействий,, которые либо вызывают мутацип, либо ингибируют синтез- ДНК. Возврат к гаплоидному состоянию после рекомбинации видимо, происходит в результате постепенной утраты отдельных хромосом. Этому способствуют такие вещества, как /г-фтор-фенилаланин и карбаматы бензимидазола, препятствующие образованию микротрубочек. [c.302]

    У всех высших растений и животных в процессе полового размножения происходит смена ядерных фаз. При оплодотворении половые клетки (гаметы) и их ядра сливаются, образуя зиготу. Отцовское и материнское ядра вносят при оплодотворении одинаковое число хромосом (п) таким образом, ядро зиготы содержит двойной хромосомный набор (2п). Иными словами, гаметы-гаплоидные клетки (т.е. клетки с одним набором хромосом), а соматические клетки-диплоидные (с двумя наборами). Поэтому при образовании гамет следующего поколения число хромосом в клетке (2и) должно уменьшиться вдвое (2и/2 = и). Совокупность процессов, приводящих к уменьшению числа хромосом, называют мейозом или редукционным делением (рис. 2.3). Мейоз - важнейший процесс у организмов, размножающихся половым путем он приводит к двум результатам 1) к перекомбинированию отцовских и материнских наследственных факторов (генов) и 2) к уменьшению числа хромосом. Мейоз начинается с конъюгации хромосом-каждая хромосома соединяется с соответствующей (гомологичной) хромосомой, происходящей от дфугого родителя. Во время конъюгации путем разрыва и перекрестного воссоединения (кроссинговера) может происходить обмен фрагментами одинаковой длины между гомологичными хромосомами. Затем следует двукратное разделение спаренных расщепившихся хромосом, и в результате образуются четыре клетки, каждая из которых имеет гаплоидное ядро. Таким образом, в процессе мейоза не только происходит перетасовка хромосом материнского и отцовского происхождения, но может произойти и обмен сегментами между гомологичными хромосомами. Оба процесса приводят к новым сочетаниям генов (к их рекомбинации). [c.24]

    У многих низших растений, включая водоросли, а также у простейших редукция числа хромосом происходит сразу после образования зиготы, так что организм оказывается гаплоидным. У растений САгетеро-фазной (антитетической) сменой поколений (мхов, папоротников) гаплоидные поколения чередуются с диплоидными. [c.25]

    У Sa haromy eta eae, или собственно дрожжей (рис. 5.9 и 5.10), мицелий отсутствует. Пекарские и пивные дрожжи представляют собой физиологические расы Sa haromy es erevisiae. Гаплоидные почкующиеся клетки дрожжей могут сливаться (копулировать). За кариогамией может сразу же следовать редукционное деление (мейоз) и образование четырех аскоспор. Однако диплоидные клетки тоже способны размножаться почкованием они крупнее и физиологически активнее гаплоидных. В промышленности используют преимущественно диплоидные и полиплоидные расы Лишь в неблагоприятных условиях (например, на среде с ацетатом) диплоидная клетка превращается в аск. [c.169]

    Рнс. 5.10. Циклы развития дрожжей. А. Sa haromy es erevisiae (преимущественно диплоидный вид) копуляция происходит непосредственно после образования аскоспор. Б. Zygosa haromy es (гаплоидные дрожжи) копулируют гаплоидные вегетативные клетки, а диплоидная фаза ограничивается зиготой. [c.170]

    У некоторых водорослей гаплофаза и днплофаза развиты примерно одинаково и даже обладают внешним сходством. У мхов гаплофаза развита сильнее, чем диплофаза сами растения гаплоидны, а диплофаза ограничена лишь спорангием и его ножкой, вырастающей из оплодотворенной яйцеклетки мейоз происходит в спорангиях и приводит к образованию гаплоидных спор, которые дают начало новым гаплоидным растениям мха. [c.35]

    У папоротников доминирует диплофаза она представлена самими растениями папоротника, на которых образуются споры. Как обычно, споры в результате редукционного деления получают половинное число хромосом. При прорастании спор развиваются заростки, которые вместе со спорами и представляют собой гаплофазу папоротников. Заростки — мелкие и малозаметные, но свободноживущие формы, на которых развиваются мужские и женские половые органы. Образование половых клеток в этих органах не сопровождается мейозом, поскольку заростки сами гаплоидны. Оплодотворенная яйцеклетка, напротив, диплоидна, и из нее вырастает само диплоидное растение папоротника. [c.35]

    Мейоз — редукционное деление процесс ядерного деления, ведущий к образованию гаплоидной фазы, в которой число хромосом уменьшено вдвое по сравнению с диплофазой. В течение мейоза ядро делится дважды, а хромосомы только один раз. Мейоз — необходимая предпосылка очень важного механизма генетической рекомбинации. [c.458]

    У многих организмов диплоидна только зигота, т. е. первое же деление, которое претерпевает зигота, представляет собой мейоз. С его помощью восстанавливается гаплоидное состояние. Если бы, как это предполагали ранее, результат мейоза состоял исключительно в редукции числа хромосом (отсюда старое название редукционное деление ), тогда смысл полового процесса был бы совершенно непонятен. К чему такая расточительность — образование половых клеток в специальных органах, формирование анатомически высокодифференцированных половых органов и т. д., если в результате не достигается ничего иного, кроме того, что два набора хромосом на какой-то, больший или меньший, срок попадают в общую замкнутую камеру, после чего тотчас же разделяются вновь, и из зиготы получается то же самое, что было в нее вложено  [c.118]

    Телофаза, правда, лишь намечается в общих чертах. Сразу же после того, как хромосомы соберутся у полюсов, начинается нормальный митоз. Хромосом1>1 продольно расщепляются на две хроматиды каждая и получаются 4 ядра, каждое с одинарным набором хроматид следовательно, это гаплоидные ядра. Затем формируется ядерная мембрана, равно как и новые клеточные стенки, и мейоз завершается образованием 4 клеток, которые называют гонами, а их совокупность — тетрадой (от греческого тетра — четыре). Это первое, пока что весьма упрощенное изображение мейоза (рис. 41 и 42) позволяет нам понять, каким образом достигается редукция числа хромосом. Как, однако, обстоит дело с двумя другими следствиями мейоза  [c.124]

    При рекомбинации получается клетка, использующая структуру верхней, т. е. материнской, хромосомы в левой ее части и нижней, т. е. отцовской, в правой части. Как происходит это явление Один мыслимый механизм — это так называемый крос-сипговер, т. е. обмен участками хромосомы с разрывом обеих в какой-то точке О, лежащей в промежутке между маркерами Ь и 5т (рис. 101). Зигота подвергается расщеплению, т. е. клетка делится с образованием гаплоидных клеток. Что это должны быть за клетки Одна из них имела бы свойства Ь+8ш , т. е. искомый рекомбинант, другая была бы Ь 8т . Кроссинговер — механизм, доказаниы для высших организмов, размножающихся половым путем. [c.307]

    Японские исследователи Наката и Танака получили образование каллусной ткани, эмбриоидов и растений-регенерантов при культивировании пыльников табака [62, 63]. Образовавшиеся растения оказались гаплоидными. Гаплоидные растения были получены при культивировании пыльников риса [ 64, 65 ]. [c.121]

    Культивирование пыльников Datura metel L.привело к образованию многочисленных эмбриоидов, а из них растений [67]. Среди этих растений было 6% гаплоидов, 24% триплоидов и 70% диплоидов, кроме того, растения были морфологически измененные, альбиносы, с антоциа-новой окраской, карлики и др. Гаплоидные растения табака были получены при культивировании молодых пыльников [68]. Части гаплоидных растений вводили в культуру и наблюдали образование каллусной ткани, из которой индуцировали образование растений, оказавшихся диплоидными. [c.121]

    У ряда растений при переопылении тетраплоидов с диплоидами образуются не триплоидные, а гораздо чаше тетраплоидные или диплоидные гибриды. Возникновение таких гибридов обусловлено мейотическими нарушениями в процессе гаметообразования у диплоидных и тетраплоид— ных форм. Предмейотические отклонения, отсутствие редукционного деления хромосом в мейозе у диплоидных форм либо эндо-удвоение их после мейоза приводит к образованию гамет тетраплоидного типа Дополнительное редукционное деление и расхождение омосом в мейозе тетраплоидов вызывает формирование гаплоидных гамет. Появление нередунированных гамет наблюдалось у диплоидных растений кукурузы [И], сорго [12], примулы [13], ежи сборной [14], картофеля [15,16], а гамет диплоидного типа - у тетраплоидных растений капусты [17], картофеля [18], кунжута [19], петунии [20]. [c.126]


Смотреть страницы где упоминается термин Гаплоидные образование: [c.85]    [c.103]    [c.266]    [c.85]    [c.103]    [c.25]    [c.58]    [c.65]    [c.69]    [c.27]    [c.36]    [c.157]    [c.166]    [c.236]    [c.45]    [c.46]    [c.70]    [c.121]    [c.121]   
Биохимия Том 3 (1980) -- [ c.267 ]




ПОИСК







© 2024 chem21.info Реклама на сайте