Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал водородное охрупчивание

    Интересной областью применения является также защита тантала от водородного охрупчивания путем контактирования с металлами платиновой группы. Уменьшение водородного перенапряжения или смещение потенциала свободной коррозии в сторону более положительных значений ведет очевидно к уменьшению степени покрытия поверхности металла адсорбированным водородом и соответственно к уменьшению абсорбции [50]. [c.399]


    Метод анодной защиты при помощи катодного протектора может быть использован не только для защиты от коррозии, но также для защиты от возникновения водородной хрупкости. Известно, например, что в жестких условиях эксплуатации в концентрированных растворах соляной и серной кислот при высоких температурах тантал вследствие наводороживания в процессе коррозии становится хрупким [192]. В подобных условиях можно защитить тантал от охрупчивания путем контактирования его с платиной или палладием [193]. При этом отношение защищаемой анодной поверхности (тантала) к катоду (платина или палладий) очень велико. Защита от наводороживания вызывается сдвигом потенциала тантала к значениям, близким к значению равновесного водородного потенциала, что в значительной степени затрудняет процесс водородной деполяризации на тантале. Кроме того, анодная поляризация тантала при контакте с катодом (платиной, палладием) также тормозит процесс восстановления водорода на тантале. Эти факторы и приводят к устранению водородной хрупкости тантала при контакте его с платиной, палладием (табл. 36) и с другими металлами платиновой группы, а также при введении в раствор ионов этих металлов или при создании гальванических осадков этих металлов на поверхности тантала. [c.164]

    Молибден в отличие от тантала и ниобия и их сплавов не подвержен водородному охрупчиванию [51]. [c.302]

    Молибден в отличие от тантала, ниобия, никеля и их сплавов не подвержен водородному охрупчиванию и способен выдерживать резкие тепловые и механические нагрузки после экспозиции в газообразном водороде при высоких температурах. [c.173]

    Ниобий несколько менее стоек к коррозии, чем тантал, и, подобно последнему, подвержен водородному охрупчиванию, если гальванический контакт или внешняя э. д. с. делают его катодным, а также при экспозиции в горячем водороде. Металл подвергается анодному окислению в кислых электролитах с образованием анодной окисной пленки, характеризующейся большой диэлектрической постоянной и высоким анодным потенциалом пробоя. Последнее свойство в сочетании с хорошей электропроводностью металла позволило использовать ниобий в качестве подложки для платиновых металлов при изготовлении анодов катодной защиты наложенным током, а также при производстве конденсаторов. [c.181]

    Преимущество тантала перед ниобием заключается в его высокой коррозионной стойкости как в окислительных, так и восстановительных средах. В отличие от ниобия тантал не растворяется в концентрированных растворах серной кислоты при температурах 100—150° С благодаря высокой стабильности его пятиокиси. Пятиокись тантала в водных растворах кислот и в концентрированных кислотах не восстанавливается катодным током, а пяти оки сь ниобия восстанавливается с трудом. Этим и объясняется, что при потенциалах, отрицательнее стационарного значения, и ниобий, и тантал практически не растворяются. Недостатком этих двух металлов является их склонность к водородному охрупчиванию, проявляющаяся у них при катодной обработке при потенциалах ниже —0,1 в [52—54]. Пластичность этих металлов может вновь возрастать при отжиге их в вакууме, когда водород легко удаляется. При температурах до 100° С в растворах серной (за исключением концентрированных), соляной и фосфорной кислот оба металла при потенциалах, положительнее стационарного, пассивны скорость их растворения из пассивпого состояния ни- [c.81]


    Коррозионная стойкость ниобия, как и тантала, связана с наличием прочно связанной с металлом пассивной окисной плеики. Правда, в более агрессивных средах ниобий уступает танталу по своей стойкости, и в литературе не сообщалось о случаях инертности ниобия к каким-либо коррозионным агентам, разрушающим тантал. По этой причине ниобий не нашел широкого ирименения в областях, требующих коррозионной стойкости, и данные о его стойкости в реальных условиях эксплуатации немногочисленны, Ниобий в большей степени, чем тантал, склонен к водородному охрупчиванию и к коррозии во многих водных растворах, В некоторых условиях водородное охрупчивание ниобия можно предотвратить, соединив его с платиной, но в общем случае этот метод, по-видимому, не эффективен. Плавиковая кислота вызывает коррозию ниобия при комнатной температуре, а концентрированные соляная, серная и фосфорная кислоты — при 100° С, В гидроокиси иатрия ниобий охруичивается, что связано скорее всего с поглощением водорода [8], Отрицательно влияет и контакт с сульфидом натрия. [c.182]

    Тантал хорошо растворяет водород, образуя с ним два внутренних гидрида, но детальный механизм этого явления пока еще недостаточно ясен. Согласно имеющимся данным, при температуре ниже 370° С может происходить охрупчивание металла, Клаусе и Форестьер сообщали [6], что охрупчивание возможно при деформации тантала в водороде даже при комнатной температуре. Анализ литературных данных показывает, что склонность тантала к водородному охрупчиванию является одной из причин, приводящих к немногочисленным случаям слабой стойкости тантала к коррозии в водных средах. Хотя тантал инертен к концентрированной соляной кислоте при температурах до 110° С, но при значительно более высоких температурах некоторая реакция происходит, и металл может поглотить достаточно большое количество водорода, приводящее к охрупчиванию. Тантал становится катодом в гальванической ячейке практически с любым из конструкционных металлов, и, чтобы предотвратить разряд водорода и проникновение его в тантал, необходимо электрически изолировать последний от других металлов, находящихся с ним в общем электролите. [c.205]

    Для титана этот метод более полезен, и в разделе 3.4 уже было описано влияние па титан небольших легирующих добавок налладия. Использование платины для предотвращения водородного охрупчивания тантала, упомянутое в разделе 3.5, также связано с ее низким перенапряжением водорода. [c.225]

    Помимо углеродистых сталей, водородная хрупкость наблюдается также у мартенситных и ферритных сплавов Сг—Fe, сплавов Мп—Fe [29], титана, ванадия, ниобия, молибдена и тантала. Механизм охрупчивания у последних элементов усложняется образованием гидридной фазы. Все эти металлы имеют объемноцент-рированную кубическую решетку, за исключением а-титана, для которого характерна плотноупакованная гексагональная решетка. В некоторых закаленных сплавах Мп—Fe также может быть плотноупакованная гексагональная решетка. Никель (гране-центрированная кубическая решетка) может подвергаться охрупчиванию только в условиях чрезвычайно сильной катодной поляризации. [c.118]


Смотреть страницы где упоминается термин Тантал водородное охрупчивание: [c.628]   
Коррозия (1981) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал



© 2025 chem21.info Реклама на сайте