Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость анодной коррозии в отсутствии пассивности

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]


    При анодной защите от общей коррозии потенциал металла необходимо удерживать в пределах пассивной области рис. 1), протяженность которой в большинстве случаев достаточно велика например, при защите аустенитных хромо-никелевых сталей в серной кислоте средней концентрации при умеренной температуре эта область простирается от 200 до 1200 мв [22, 32]. Выход же за пределы этой области потенциалов может привести к значительному возрастанию скорости растворения металла, в том числе и до величин, превышающих коррозию в отсутствии защиты. Для успешной защиты химического оборудования считается достаточным при применении современных электронных приборов наличие пассивной области в интервале потенциалов 30—50 мв [33]. Скорость коррозии металла, в пассивном состоянии должна лежать ниже конструктивно-допустимой величины, определяемой исходя из срока службы аппаратуры или допустимого накопления продуктов коррозии в агрессивной среде. [c.86]

    В. КОЛИЧЕСТВЕННАЯ ОБРАБОТКА Скорость анодной коррозии в отсутствии пассивности [c.56]

    СКОРОСТЬ АНОДНОЙ КОРРОЗИИ в ОТСУТСТВИИ ПАССИВНОСТИ [c.57]

    СКОРОСТЬ АНОДНОЙ коррозии в отсутствии пассивности [c.59]

    Однако установление области пассивности только на основании значений растворимостей продуктов коррозионной реакции, как это делается на подобных диаграммах, не будет в действительности вполне определенным. Следует иметь в виду, что образование нерастворимых или, точнее,, малорастворимых продуктов реакции не всегда означает фактическое установление пассивного состояния и невозможность протекания коррозионного процесса. Примером может быть отсутствие пассивности и, наоборот, заметная скорость ржавления железа в нейтральных растворах, содержащих хлор-ионы, несмотря на весьма малую растворимость конечных продуктов реакции. Для возникновения электрохимической пассивности металла необходимым условием является не вообще возможность образования нерастворимых продуктов коррозии, а только образования их в результате анодного процесса непосредственно на реагирующей поверхности, а не в растворе вследствие вторичных процессов между анодными и катодными продуктами коррозионной реакции. [c.19]

    Как видно из кривых (рис. 1), для сплавов титана петли активного анодного растворения, свидетельствующей о возможности активации металла, не обнаружено. Для титана же такая петля появляется в растворах с 20, 15 и 10% НС в растворе хлорида бария — с 5% НС1, участок активного анодного растворения отсутствует. Стационарный потенциал титана в растворах с 20—10% НС1 находится в области активного растворения, с 5% НС1 — в пассивной области. Величины анодных токов, соответствующие стационарным потенциалам каждого сплава и характеризующие скорость коррозии, значительно различаются в растворах, содержащих 20— 10% НС1, и мало отличаются для 5% НС1. По значениям увеличивающихся токов металлы располагаются в следующем порядке Ti—Мо Ti—Pd и Ti. У сплавов Ti—Мо в области положительных потенциалов наблюдается увеличение тока. По-видимому, это вызвано молибденом, так как в данных условиях он имеет повышенную скорость растворения за счет перепассивации. [c.68]


    Вагнер [3] недавно предложил уточнение первого определения, сущность которого сводится к следующему металл является пассивным, если при смещении электродного потенциала в электроположительном направлении скорость анодного растворения в данной среде при постоянных условиях становится меньше, чем была при несколько менее благородном потенциале. Или, другими словами, металл — пассивный, если с повышением концентрации окислителя в растворе или газовой фазе окисление (при отсутствии внешнего тока) становится медленнее, чем при несколько меньшей концентрации окислителя. Эти определения равнозначны в условиях, где применима электрохимическая теория коррозии. [c.62]

    Горизонтальная кривая располагается при потенциале +0,45 в и сопровождается сильным колебанием потенциала (область 3) Это странное поведение, конечно, обусловливается тем обстоятельством, что становится возможным образование твердой окисной пленки на металле в порах, пронизывающих толщу кристаллов. Расчет, основанный на более ранних измерениях Фладе (касающихся действительно потери пассивности), по-видимому, указывает на то, что в 10%-ной На 501 Для достижения пассивного состояния требуется потенциал в +0,580 в . Однако в порах между кристаллами кислотность значительно ниже действительно, значение pH равно 2,2, которое допускает образование окисла при +0,450(3. Если, однако, железо покрывается окисной пленкой, анодное растворение практически прекращается, и сила тока резко падает до пренебрежимой величины. В отсутствие тока растворение кристаллов сульфата Ее может происходить без какой-либо компенсации за счет образования новых кристаллов, так что железо вскоре снова подвергается действию кислоты (почти полностью 10%-ной) когда эта кислота достигает металла, то уже образованная окисная пленка будет почти немедленно исчезать в результате восстановительного растворения, которое при этом потенциале является возможной реакцией. Следовательно, железо на мгновение оказывается без окисной пленки и следовательно может снова проходить сильный ток, приводящий к образованию свежего окисла в порах, вызывая новое падение тока. Этим объясняются сильные колебания тока. Колебания продолжаются до потенциала приблизительно +0,580 в и затем прекращаются, так как выше этого значения окисная пленка становится стабильной даже в присутствии 10%-ной кислоты — как это уже установлено. Выше новой области потенциалов (область 4) сила тока изменяется очень мало, будучи лишь достаточной, для того чтобы способствовать непосредственному растворению окисла кислотой, это будет вызываться (стр. 214) тем, что непосредственное растворение (совместно с восстановительным растворением) происходит чрезвычайно медленно. Для многих практических целей может быть указано, что выше этой области пассивный электрод ведет себя подобно платине или другому благородному металлу. Почти (полное) отсутствие тока продолжается приблизительно до 1,66 в, когда становится возможным выделение кислорода (область 5). Величины силы тока и скорости коррозии в пассивной области обсуждены в статьях 115], [16]. [c.218]

    Таким образом, число и конструкция вспомогательных электродов — катодов определяется в каждом конкретном случае в соответствии с конструктивными особенностями технологических аппаратов, подлежащих анодной защите. Материал катода выбирают в зависимости от его коррозионно-электро-химического поведения в определенной среде. Так как пассивное состояние конструкции можно поддерживать непрерывной и периодической поляризацией, определяющей должна быть скорость коррозии при двух условиях плотности тока на катоде, соответствующей поддержанию пассивного состояния защищаемого объекта, и в отсутствие защитного тока при периодической поляризации во время паузы. Эти условия были определяющими при исследовании и подборе материалов в качестве катодов для систем анодной защиты в аммонийно-аммиачных, сернокислотных и других средах. [c.80]

    При защитных потенциалах (фз = 0,7—0,9 В) получены стационарные значения плотности защитного тока, характеризующие растворение стали в области устойчивой пассивности. В этих условиях (90%-ная Н2 04) 1= ЬЮ А/м ,что соответствует скорости коррозии 6,5 мг/(м2-ч). Среднегодовая скорость коррозии, установленная по контрольным образцам в отсутствие защиты, составляет 0,7 г/(м2-ч). Таким образом, анодная защита позволяет уменьшить скорость коррозии примерно в 100 раз. [c.141]

    На возможность пассивирования металлов кислородом воды указывает и Хор. Основанием для такого утверждения явились эксперименты, в которых с помощью меченых атомов было установлено, что при анодном окислении никеля в серной кислоте из воды переходило на металл гораздо больше кислорода, чем из сульфат-ионов. В литературе встречается и ряд других указаний, свидетельствующих о пассивирующих свойствах воды. В частности, Эванс сообщает любопытный факт 99%-ная уксусная кислота не оказывала никакого коррозионного воздействия на алюминий, однако стоило из нее удалить 0,05% воды, как скорость коррозии увеличилась в 100 раз. В диметилформамиде, содержавшем серную кислоту, никель переходил в пассивное состояние, когда концентрация воды превышала 0,2%. В отсутствие воды никель активно растворялся. Описаны также случаи пассивирования титана незначительными количествами воды в неводных средах, а также алюминиевых сплавов и нержавеющих сталей в окислителях. [c.70]


    Особая осторожность должна быть проявлена при защите анодными ингибиторами конструкций, содержащих зазоры и щели. Такие конструкции и в отсутствие ингибиторов подвергаются часто сильной коррозии из-за возникновения макроэлементов [55]. При неправильной дозировке анодных ингибиторов щелевая коррозия может возрасти. Объясняется это тем, что концентрация ингибитора в щелях, куда их доступ затруднен, может снизиться до значени , прн которых полная пассивация поверхности станет невозможной. Поскольку на открытой поверхности, куда имеется свободный доступ ингибитора, металл остается в пассивном состоянии и его потенциал более положителен, чем в щели, где часть поверхности находится в активном состоянии, возникает своеобразный активно-пассивный элемент, анодом которого является металл, находящийся в щели. Благодаря анодной поляризации потенциал металла в щели сдвигается в положительную сторону (по сравнению с потенциалом, который металл имел в отсутствие ингибиторов) и в соответствии с законами электрохимической кинетики скорость растворения увеличивается. В результате этого при неправильном дозировании ингибиторов наблюдаются сильные разрушения металлов под уплотнительными прокладками, в резьбовых соединениях, в кольцевых зазорах трубной доски конденсаторов, в застойных местах охладительных систем и т. п. [c.99]

    Преимущественно катодный контроль при превалирующем торможении за счет диффузии кислорода. Анодная кривая ЕраМ пересекает катодную в точке М в области предельных диффузионных токов. Соотношение Д к2/Д а2 велико, т. е. заметная анодная пассивность отсутствует. Этот случай соответствует, например, коррозии железа, а также цинка и ряда других металлов в активном состоянии в нейтральных растворах хлоридов при относительно невысокой скорости подвода кислорода, например, в спокойной или слабо перемешиваемой морской воде. [c.43]

    Электрохимическая защита - уменьшение скорости электрохимической коррозии металлических конструкций при их поляризации. Это уменьшение скорости коррозии может быть достигнуто как катодной, так и анодной поляризацией металлической конструкции. При анодной поляризации защищаемый металл или присоединяется к положительному полюсу источника тока (т. е. в качестве анода), или контактируется с металлом, имеющим более положительный потенциал. Уменьшение скорости коррозии при анодной поляризации металла конструкции имеет место только в случае перевода его в пассивное состояние. Поэтому анодная электрохимическая защита может быть эффективна для легко пассивирующихся металлов и сплавов в окислительных средах при отсутствии активных депассивирующих ионов. [c.9]

    A.E yJ .EAг велико, т. с. заметная анодная пассивность отсутствует. Этот случай соответствует, например, коррозии железа, а также цинка и ряда других металлов в активном состоянии в нейтральных растворах хлоридов при относительно высокой скорости подвода кислорода (например, в спокойной или слабо перемешиваемой морской воде). [c.26]

    На основании анализа потенциостатических кривых скорость коррозии—потенциал можно сделать общий вывод, что при разработке нового конструкционного материала необходимо, чтобы потенциал его в условиях эксплуатации находился в области пассивного состояния, которое возникает при определенном значении потенциала пассивации Ей) и плотности анодного тока пассивации (г п). Для самопассивации нержавеющих сталей и других металлов необходимо, чтобы окислительно-восстановительный потенциал среды, а следовательно, потенциал катодной реакции имел более положительное значение, чем потенциал полной пассивации металла ( п.п), и чтобы катодный ток (скорость катодного процесса) превышал значение плотности анодного тока пассивации (1п). При отсутствии этих условий металл находится в активном состоянии и интенсивно растворяется. [c.129]

    В условиях возможного наступления пассивности (в присутствии окислителя и при отсутствии активаторов) контакт с катодным металлом может обеспечить наступление пассивного состояния основного металла и значительно снизить при этом скорость его коррозии, т. е. является катодным проектором (см. с. 323). Контакт с анодным металлом в этих условиях затрудняет наступление пассивности основного металла, а если последний находится в пассивном состоянии, может его депассивировать, что приводит к увеличению его коррозии (см. с. 306). [c.362]

    Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии. [c.71]

    На рис. 56 приведены потенциоста-тические анодные поляризационные кривые для алюминия в азотной кислоте различной концентрации, полученные автором совместно со Сторчаем. Учитывая характер изменения скорости анодного процесса (растворение металла) в зависимости от потенциала, можно заранее предсказать, что контакт алюминия с более благородным металлом приведет в азотной кислоте любой концентрации к увеличению скорости коррозий алюминия. Контактный эффект будет зависеть от того, на каком участке поляризационной кривой находится общий потенциал пары если на горизонтальном — следует ожидать большого увеличения коррозии, на вертикальном — незначительного. Отсутствие на анодных кривых ниспадающего участка, который характерен для металла, способного в данной среде переходить в пассивное состояние, указывает, что ни в коем случае контакт не приведет к уменьшению скорости коррозии алюминия. Более того, здесь настораживает одна характерная особенность  [c.180]

    АЕк4 и А а4 соизмеримы или даже А к4/Д л4 < 1. Обычно это характеризует заметную анодную пассивность. Характерный пример коррозии металлов из пассивного состояния железо и сталь в азотной кислоте, нержавеющие стали в аэрированных нейтральных или слабокислых растворах в отсутствии хлор-ионов, титан в слабокислых растворах, алюминий в нейтральных растворах. Скорость коррозии зависит от плотности тока анодного растворения из пассивного состояния и может сильно повышаться при наличии активных ионов, например, при увеличении концентрации хлор-ионов в азотной кислоте для железа и стали или фтор-ионов для титана. [c.44]

    Анодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к положительному полюсу внешнего источника постоянного тока (т. е. в качестве анода), а к отрицательному полюсу присоединяют дополнительный электрод, поляризуемый катодно. При таком пропускании тока поверхность защищаемого металла поляризуется анодно ее потенциал при этом смещается в положительную сторону, что обычно приводит к увеличению электрохимического растворения металла однако при достижении определенного значения потенциала может наступить пассивное состояние металла (что наблюдается при отсутствии депассиваторов в коррозионной среде и приводит к значительному снижению скорости электрохимической коррозии металла), для длительного сохранения которого требуется незначительная плотность анодного тока. На дополнительном электроде — катоде при этом протекает преимущественно катодный процесс. При больших плотностях анодного тока возможно достижение значений потенциала, при которых наступает явление перепассивации (транспассивности)— растворение металла с переходом в раствор ионов высшей валентности, в результате чего образуются растворимые или неустойчивые соединения (л<елезо и хром образуют ионы Ре04 и СГО4 , в которых Ре и Сг шестивалентны), что приводит к нарушению пассивного состояния и увеличению скорости растворения металла. Анодная защита металлических конструкций от коррозии уже нашла применение в химической, бумажной и других отраслях промышленности. [c.242]

    Анодная защита металлов пока применяется реже, так как область ее использования более ограничена только в последние годы она находит некоторое распространение и в химической промышленности. Электрохимическая защита путем анодной поляризации состоит в том, что защищаемый металл присоединяют к положительному полюсу внешнего источника постоянного тока или контактируют с металлом, имеющим более положительный потенциал. Защищаемая металлическая конструкция при анодной защите и в первом и во втором случае становится анодом, но уменьшение скорости ее коррозии имеет место только при условии перевода конструкции в пассивное состояние. По этой причине анодная защита применима только для защиты тех конструкций, которые изготовлены из легкопассивирующихся металлов или сплавов и подвергающихся воздействию главным образом окислительных сред при отсутствии депассиваторов. [c.298]

    При нарушении сплошности покрытия образуется биметаллическая система алюминиевое покрытие — сталь. Смешанный электродный потенциал этой системы определяется кинетикой и соотношением скоростей анодной и катодной реакций, которые протекают преимущественно на покрытии (анодная реакция ионизации алюминия) и на поверхности стальной трубы (катодная реакция восстановления растворенного кислорода или выделения водорода). При температуре 20°С первоначально электродный потенциал биметаллической системы устанавливается вблизи потенциала питтингообразования алюминиевого покрытия. При потенциале питтингообразования анодная реакция ионизации алюминия поддерживается сопряженной катодной реакцией восстановления кислорода. С увеличением количества питтингов и соответственно площади локального нарушения пассивного состояния покрытия скорость катодной реакции, ограниченная по значению предельным диффузионным током, может оказаться недостаточной для поддержания процесса ионизации алюминия в кинетической области при потенциале питтингообразования. Это приводит к смещению электродного потенциала к более отрицательным значениям. Причем такое смещение происходит тем раньше, чем выше концентрация хлор-ионов. Аналогичное влияние на формирование стационарного потенциала биметаллической системы оказывает повышение температуры. С повышением температуры и концентрации хлор-ионов также наблюдается увеличение смещения в отрицательную сторону электродного потенциала биметаллической системы по сравнению с потенциалом коррозии железа. Наблюдения показали, что с увеличением смещения в отрицательную сторону электродного потенциала биметаллической системы относительно потенциалов коррозии железа степень коррозии участков образцов с нарушением сплошности покрытия уменьшается. За год испытаний при концентрациях хлор-ионов 0,003—0,07 н при температурах 60-80ОС коррозия железа на участках нарушения сплошности покрытия вообще отсутствовала, тогда как при 20РС в подобных испытаниях наблюдался слабый налет ржавчины. [c.64]

    Как упоминалось ранее, в случае влажной коррозии до сих пор считалось, что скорость коррозии обычно лимитируется скоростью доставки кислорода следует указать, что, если к системе приложена внешняя э. д. с., то подобного ограничения не может быть. С первого взгляда кажется, что может быть достигнута любая скорость коррозии, как бы велика она не была, но практически имеет место и пассивация в неразмешиваемых электролитах преобладает пассивация. Как показано, на аноде образуется пленка, обычно невидимая, которая делает анод пассивным. Возражения против того, что пассивность, возникающая при действии кислоты на железный анод, является результатом образования окисной пленки, проверены и считаются несостоятельными пленки, которые в отсутствие анодного тока разрушались бы кислотой в результате восстановительного растворения, стабильны в условиях анодного процесса. При образовании пленок на аноде весьма важной причиной является влияние анионов, особенно хлор-ионов, которые неблагоприятны для процесса пассивации. Имеются случаи, когда анодная коррозия умышленно использовалась для таких целей, например, при образовании пигментов. [c.208]

    По Феттеру , коррозию пассивных металлов нельзя свести к активному растворению металла в порах. Об этом свидетельствуют количественные наблюдения, приводящие к субатомарным размерам пор , а также качественное состояние продуктов коррозии или соотношение между толщиной слоя, потенциалом и скоростью коррозии (см. 187). Поэтому коррозию пассивного металла нужно рассмаривать как растворение беспористого пассивирующего слоя в электролите, имея в виду, что в отсутствие внешнего тока анодный процесс, идущий на восполнение растворяющегося пассивирующего слоя, компенсируется катодной реакцией восстановления окислителя (например, растворение железа в азотной кислоте или щелочном электролите, содержащем кислород). [c.803]

    Изучение завяси лости скорости коррозии от потенциала методом химической пассивации показало, что на поляризационной кривой отсутствует участок активного растворения. При введении уже первых порций метаванадата натрия сталь находится на границе активно-пассивного состояния. Поскольку этот ингибитор в широкой области концентраций не изменяет площадь, на которой протекает анодная реакция растворения (см. рис. 2,23), он не увеличивает эффективности катодного процесса. Уменьшение скорости коррозии в условиях, когда потенциал остается постоянным, объ- [c.171]

    Например, при анодной поляризации, если наступает явление пассивности (условие, при котором скорость растворения металла, т. е. переход его ионов в раствор, резко замедляется), анодная кривая вследствие большой поляризуемости круто отклоняется в сторону положительных значений потенциала, что объясняется малой скоростью коррозии металла в анодной среде. Наоборот, при отсутствии явления пассивности анодные поляризационные кривые пологие. Это указывает на сравнительно небольшую анодную поляризуемость и протекание коррозионного процесса без заметного тормолсения. [c.58]


Смотреть страницы где упоминается термин Скорость анодной коррозии в отсутствии пассивности: [c.20]    [c.118]    [c.120]    [c.39]    [c.44]    [c.33]    [c.449]    [c.142]    [c.89]    [c.71]    [c.12]    [c.13]    [c.181]    [c.581]    [c.44]   
Смотреть главы в:

Коррозия пассивность и защита металлов -> Скорость анодной коррозии в отсутствии пассивности




ПОИСК





Смотрите так же термины и статьи:

Пассивность

Пассивность анодная

Скорость коррозии

Ток анодный



© 2025 chem21.info Реклама на сайте