Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал коррозионная стойкость

    Стандартных и обш,епринятых кондиций на концентраты ниобия и тантала нет. Можно указать лишь на технические условия ограниченного назначения или сослаться на производственную практику. Концентраты, применяемые для непосредственного получения ферросплавов (феррониобия, ферро-тантало-ниобия), должны содержать минимальное количество Р, 5, С, 51, Т1. Наиболее вредны Р, 5, С. Повышенное содержание примесей фосфора и углерода придает стали, для легирования которой используются ферросплавы, хрупкость повышенное содержание серы вызывает красноломкость. Кроме того, сера ухудшает коррозионную стойкость нержавею-Ш.ИХ сталей. Состав некоторых концентратов приведен в табл. [c.65]


    БОРИДЫ — соединения бора с металлами образуются при высоких температурах. Имеют повышенную твердость. Стойкость против истирания и коррозионную стойкость. 5. никеля используют как катализатор. Б. хрома, циркония, Титана, ниобия и тантала, благодаря их тугоплавкости, применяют для изготовления деталей реактивных двигателей, лопаток газовых турбин и др. Б. лантана, церия и бария используют в электронных приборах. Поверхностным борированием резко повышается твердость, стойкость к срабатыванию и коррозионная стойкость изделий из стали, молибдена, вольфрама и др. [c.46]

    Ниобий и тантал имеют одинаковые параметры решетки, весьма близкие ионные и атомные радиусы, не подвержены полиморфным превращениям и при сплавлении друг с другом образуют непрерывный ряд гомогенных твердых растворов [55—58]. С увеличением содержаиия тантала коррозионная стойкость сплавов ниобий — тантал повышается, приближаясь к стойкости чистого тантала [49]. Сплавы этой системы с успехом могут заменить чистый тантал во многих химических производствах и в значительной мере снизить его расход. Использованию этих сплавов способствуют и их хорошие механические и технологические свойства, а также отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением. Они хорошо свариваются аргоно-дуговой сваркой. Экспериментально также установлено, что сплавы ниобий—тантал могут применяться в нагартованном состоянии, так как скорость коррозии их в зависимости от степени деформации изменяется незначительно, а именно на 0,01—0,02 мм год [59]. Указанное свидетельствует о том, что увеличение плотности дислокаций в решетке, повышающее уровень внутренних напряжений в результате деформации [60], сопровождающееся изменением структуры от полиэдрической до волокнистой, не оказывает существенного влияния на изменение химической стойкости сплавов ниобий — тантал. Результаты исследования микроструктур указывают, что ни коррозионная [c.85]

    На рис. 41 и 42 представлены данные по коррозионной стойкости различных металлов в кипящей серной кислоте — среде, особенно агрессивной, в которой нержавеющая сталь совершенно нестойка, а никель-молибдено-вый сплав ("хастеллой ) стоек лишь при небольших концентрациях кислоты (см. рис 3). Данные, представленные на рис. 41, заимствованы иэ работы [38], а на рис. 42 из работ автора с сотрудниками, в которых исследовались сплавы ванадия [51], ниобия [52], молибдена [53] и тантала [54]. [c.52]


    Сплавы тантала. Тантал — наиболее коррозионностойкий, но и самый дорогой из тугоплавких металлов. Поэтому тантал легируют другими металлами с целью уменьшения стоимости и сохранения при этом такой же или почти такой же коррозионной стойкости, как у чистого тантала. Естественно, что легирование тантала для ощутимого снижения стоимости должно быть глубоким. [c.12]

    Скорость коррозии сплавов тантала в кипящей фосфорной кислоте значительно меньше, чем в кипящей серной (рис. 77), но и в этом случае при легировании тантала коррозионная стойкость заметно ухудшается. Однако влияние легирующих элементов на коррозионную стойкость тантала, в кипящей фосфорной кислоте все же значительно слабее, чем в кипящей серной кислоте (рис. 78). При этом необходимо обратить внимание на различие масштабов по ординате на рис. 75 и 78. Существенной разницы во влиянии легирующих элементов на коррозионную стойкость сплавов тантала не обнаружено (расхождение кривых при испытании сплавов различных составов ненамного больше пределов естественного рассеяния результатов коррозионных испытаний). [c.79]

    В химической технологии применяются теплообменники, изготовленные из самых различных металлов (углеродистых и легированных сталей, меди, титана, тантала и др.), а также из неметаллических материалов, например графита, тефлона и др. Выбор материала диктуется в основном его коррозионной стойкостью и теплопроводностью, причем конструкция теплообменного аппарата существенно зависит от выбранного материала. [c.24]

    К двухфазным сплавам титана, обладающим повышенной коррозионной стойкостью, относятся силавы Т1 — Та. При содержании тантала в сплаве выше 1% имеет место заметное повыше- [c.287]

    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]

    Ниобий, физико-химический аналог тантала, дешевле последнего приблизительно в 5 раз. Ниобий — технологичный (пластичный) металл, но уступает по коррозионной стойкости танталу, что сужает его применение. [c.48]

    Ниобий - аналог тантала по многим свойствам, в том числе и химическим, ниобий не отличается от тантала, однако по коррозионной стойкости уступает танталу. [c.50]

    Ванадий имеет значительно более низкую коррозионную стойкость, чем ниобий и тантал, но все же она не ниже, чем у нержавеющей стали. [c.51]

    Нетрудно видеть, что различие в коррозионной стойкости тугоплавких металлов начинает проявляться при каком-то определенном значении концентрации кислоты. Например, при концентрации кислоты 60% и менее коррозионная стойкость Та и Мо одинакова оба металла пригодны для эксплуатации в таких кислотах, но при концентрации кислоты 80% преимущество тантала как коррозионностойкого материала очень значительно. [c.53]

    Данные по стойкости тугоплавких металлов в азотной кислоте представлены на рис. 47. Критическая концентрация азотной кислоты для Т1, который совершенно нестоек даже в слабых кипящих растворах серной и соляной кислот, 30%. В азотной кислоте с концентрацией 25% тантал, ниобий и цирконий абсолютно стойки. Если коррозионную стойкость оценивать не по уменьшению массы металла в зависимости от концентрации кислоты, а за критерий коррозионной стойкости принять глубину коррозии 0,25 мм/год, то в этом случае коррозионная стойкость того или иного металла будет характеризоваться одной цифрой — критической концентрацией кислоты. [c.55]

    Элементы УА группы (V, ЫЬ, Та) допускают глубокое легирование, что может существенно изменить их коррозионную стойкость. Впрочем, эти металлы легируют в самых различных целях. Наименее коррозионно-стойким из указанных трех металлов является ванадий. Легируют ванадий для повышения его коррозионной стойкости. Тантал - самый коррозионностойкий тугоплавкий металл, но и самый дорогой. При легировании тантала должны использоваться такие элементы, которые не снижают или в минимальной степени снижают коррозионную стойкость, но уменьшают стоимость сплава по сравнению с чистым танталом. [c.60]


    Тантал, как указывалось вьппе, не ухудшает технологическую пластичность ванадия, а высокая коррозионная стойкость достигается уже при -10 ат.% Та ( 30 мас.%). [c.65]

    Все тугоплавкие металлы обладают отрицательными нормальными электродными потенциалами и располагаются в ряду активности левее водорода. Высокая коррозионная стойкость тугоплавких металлов обусловлена образованием на поверхности плотной, химически устойчивой пленки, представляющей собой окисел данного металла для Та, ЫЬ, Мо, 7г — это Та Об, N52 05, МоОз, 2г2 0 и т.д. Так, например, тантал без окисной пленки обнаруживает сильную анодность по отношению к большинству металлов в течение нескольких секунд после погружения пары в электролит, но образование на его поверхности окисла Таг 05 под действием анодного тока быстро изменяет потенциал тантала на обратный и тантал становится катодом (рис. 48). Этот процесс аналогичен процессу пассивации алюминия, но протекает быстрее (рис. 49). [c.56]

    Результаты большинства исследований подтверждают, что в средах, в которых тантал абсолютно стоек (скорость коррозии менее 0,01 мм/год), сплавы, с содержанием ниобия до 50 мас.% также устойчивы против коррозии. Их коррозионная стойкость соответствует нормам 1 балла (скорость коррозии менее 0,1 мм/год). К таким средам относятся кипящие растворы серной, азотной, соляной и фосфорной кислот, растворы щелочей, влажный хлор и его соединения и другие агрессивные среды. [c.78]

    На рис. 79 показана допустимая концентрация кипящей фосфорной кислоты, при которой скорость коррозии не превышает 0,1 мм/год (1 балл коррозионной стойкости). Преимущество, точнее, меньшее отрицательное влияние ниобия на коррозионную стойкость тантала по сравнению с другими легирующими элементами проявляется вполне определенно. Возможно, что и при работе в серной кислоте ниобий меньше, чем другие элементы, понижает коррозионную стойкость тантала, если ограничить скорость коррозии более строгими допусками. [c.79]

Таблица И Коррозионная стойкость тантала в различных средах Таблица И Коррозионная стойкость тантала в различных средах
    Результаты испытаний, представленные на рис. 80, оказались несколько неожиданными. Легирование незначительно ухудшило коррозионную стойкость тантала в азотной кислоте (для всех систем легирование примерно одинаково) легирование Ti и V не ухудшило коррозионную стойкость тантала в соляной кислоте, а легирование Nb ухудшило. [c.80]

    Разумеется, самое простое решение вопроса — использование чистого тантала. Однако это самый неэкономичный способ обеспечения необходимой коррозионной стойкости. Если в данной среде такой же стойкостью обладает ниобий, то стоимость изделия из ниобия будет равна лишь 1/4 стоимости этого же изделия, изготовленного из тантала. Очевидно, что стоимость Та—Nb-сплавов в зависимости от соотношения в них компонентов должна составлять от 1/4 до 1 от стоимости тантала. Вследствие высокой стоимости этих материалов, составляющей 50-75% и более от стоимости изделия, правильный выбор металла (сплава) для изготовления того или иного изделия приобретает решающее значение с точки зрения экономического расходования средств. [c.81]

    Легирование тантала и ниобия титаном особенно экономично, так как титан — самый дешевый из тугоплавких металлов (в 100 раз дешевле тантала) и самый легкий из них (плотность 4,5 г/см ). Кроме того, в отличие от других элементов (Мо, У или Zr) титан увеличивает пластичность Та и МЬ. В связи с этим по принятой и описанной выше технологии производства ниобиевых сплавов бьш изготовлен и исследован тройной сплав ЫЬ + + 20 ат.% Та + 7 ат.% Т1 (ЫЬ -ь 30 мас.% Та + 4 мас.% Т1). Предполагалось, что этот сплав по коррозионной стойкости будет мало отличаться от двой- [c.84]

    Бабкин Ю.А. и др. Коррозионная стойкость тантал-ниобиевых сплавов в серной кислоте. - Изв. вузов. Цв. металлургия, 1960, № 4, с. 153-157. [c.117]

    Ванадий — важнейшая после марганца легирующая добавка к стали для придания ей ковкости и сопротивления к удару. Ниобий и тантал применяют как присадки к инструментальным сталям для повышения их прочности и коррозионной стойкости, в чистом виде [c.181]

    В общем, можно сказать, что тантал по коррозийной стойкости превос- ходит все остальные металлы. Он практически абсолютно стоек в болыпин-стве активных коррозионных сред и технологичен. Единственным, однако очень существенным, препятствием для широкого применения тантала является его высокая стоимость, примерно равная 0,2—0,3 стоимости золота. Молибден и вольфрам во многих (хотя далеко не всех) средах абсолютно стойки, т.е. в этих средах они имеют такую же коррозионную стойкость, [c.47]

    Тантал — конструкционный металл с наиболее высокой плотностью, равной 16,6 Мг1м . Из всех известных металлов и сплавов тантал обладает наиболее высокой коррозионной стойкостью, несмотря на электроотрицательный нормальный электродный потенциал. Коррозионная стойкость тантала объясняется наличием на его поверхности стойкой окисной пленки ТзаОд, обладающей хорошим сцеплением, непроницаемостью и защищающей металл от действия большинства агрессивных сред и при высоких температурах. [c.293]

    Тантал (температура плавления 3000°С, плотность 16,6 г/см ) обладает самой устойчивой пассивностью среди известных металлов. Он сохраняет пассивность в кипящих кислотах (например, НС1, HNOg или H2SO4), влажном хлоре или растворах Fe lg при температурах выше комнатной. Такая коррозионная стойкость свидетельствует о том, что Фладе-потенциал металла отрицательнее потенциала водородного электрода в этом растворе и что присутствие ионов С1" не влияет на низкую плотность тока в пассивном состоянии. Благодаря высокой стойкости в кислотах тантал в особых случаях применяют в химической промышленности (например, при изготовлении перегонных аппаратов для [c.382]

    Ниобий и тантал нашли широкое применение благодаря таким практически ценным свойствам, как высокая температура плавления, значительная коррозионная стойкость, механическая прочность, малый коэффициент термического расширения. Эти металлы идут на изготовление быстрорежущих и корроэион-ностойких сталей. Ниобий используют также в радиотехнике, производстве рентгеновской и радиолокационной аппаратуры. [c.505]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]

    Сплавы тантала. Высокая коррозионная стойкость тантала и эффектив-ность его применения для работы в сильноагрессивных средах не вызывают ус9мнения. Однако высокая стоимость и дефицитность этого металла препятствует его широкому применению и вьаьшают необходимость разработки способов его удешевления за счет легирования [63]. Считалось, что все [c.74]

    На основании известных литературных данных можно сделать следующий общий вывод чистый тантал обладает очень малой или нулевой склонностью к коррозионному разрушению, ниобий - вполне определенной зависимость коррозионных потерь определяется содержанием компонентов в сплавах (рис. 73). К таким же результатам пришли и авторы работы [73]. В этой работе исследовали сплавы системы Ta-Nb (от О до 100% Nb) в 10%-ном растворе КОН, 3%-ной HF, 10%- и 20%-ной НС1, 10%-ной и концентрированной Нг SO4 при переменном погружении и в кипящих растворах. Показано, что при содержании ниобия до 50 мас.% коррозионная стойкость сплава Ta-Nb практически не понижается. Когда концентращся ниобия достигает 70 мас.%, наблюдается существенное ухудшение коррозионной стойкости сплава, при дальнейшем уменьшении содержания тантала -ее резкое ухудшение. [c.77]

    Систематические исследования коррозионной стойкости сштавов тантала с другими (а не с ниобием) элементами были проведены только авторами работы [54]. Однако опубликованы были лишь некоторые результаты этих исследований, в связи с чем ниже более подробно изложим их методику и результаты. [c.78]

    Рекомендации по легированию, которые приведены ниже, разработаны исходя из требования, что скорость коррозии сплава не должна превышать 0,1 мм/год, т.е. соответствовать 1 баллу коррозионной стойкости. Сплавы указанных составов предназначены для работы в кипящей кислоте эксплуатация сплавов при более низкой температуре обеспечивает дополнительный запас надежности. Выбор той или иной основы сплавов тугоплавких металлов и степени их легирования вследствие сзоцественно различающейся стойкости этих металлов во многих случаях приобретает решающее значеш1е. Конкретную стоимость юго или иного металла указать трудно, так как она непостоянна и зависит от многих обстоятельств технологического и конъюнктурного плана. В данном случае достаточно привести примерное соотношение стоимости тугоплавких металлов. Оно следующее Nb в 2 раза дешевле Та, W и Мо — в 10 раз, V — в 5 раз, Ti — в 100 раз. Однако необходимо учитьшать также и плотность тугоплавких металлов (см. табл. 1). Все указанные тугоплавкие металлы, кроме W, легче, чем Та. Весьма округленно плотность относительно тантала равна —4 для Ti, —3 для V, —2 для Nb, —1,5 для Мо, 1 для W. Следовательно, при изготовлении изделия (детали) не из тантала, а из титана его стоимость будет меньше в 400 раз, из ванадия — в 15 раз, из ниобия — в 4 раза, из молибдена — в 15 раз, из вольфрама - в 10 раз. [c.81]

    На рис. 81 представлены результаты испытаний образцов этого сплава в кипящих НгSO4, НС1, Н3РО4 и для сравнения - кривая, характеризующая коррозионную стойкость нелегированных Та и Nb. Видно, что в серной кислоте с концентрацией до 40-50% тройной сплав имеет стойкость, равную стойкости тантала, и лишь при концентрации кислоты выше 60% уступает танталу. Чистый ниобий имеет коррозионную стойкость в соляной кислоте на уровне коррозионной стойкости тройного сплава лишь при концентрации кислоты до 15%. Аналогичные данные получены и при испытании в других кислотах. Критическая концентрация кипящей кислоты, при которой стойкость тройного сплава и для сравнения Nb и Та сохраняется на уровне 1 и 2 баллов, приведена в табл. 18. [c.85]

    С целью повышения жаропрочности молибдена разработаны различные сплавы. С точки зрения обычных представлений эти сштавы являются микролегированными углеродом, цирконием и титаном. Указанные элементы, образуя дисперсную вторую фазу (карбиды), значительно повышают жаропрочные свойства молибдена, однако микролегирование мало влияет на коррозионную стойкость (показано ниже). Изменение корро-зиошой стойкости достигается при глубоком легировании. Для молибдена такое легирование нецелесообразно, так как, по-видимому, оно должно приводить к ухудшению его технологических свойств. Кроме того, и нелегированный молибден обладает высокой коррозионной стойкостью в концентрированных кислотах — практически на уровне тантала. [c.86]

    Донцов С.Н. и др. Влияние технологических факторов на коррозионную стойкость и механические свойства сплавов ниобий-тантал. Научн. тр. Гиредмета, 1972, т. 32, с. 152-157. [c.117]

    Металлический тантал более устойчив по отношению к различным реагентам при повышеннойтемпературе, чем ниобий. Соляная, азотная и разбавленная серная кислоты, а также царская водка не оказывают на него никакого действия даже при нагревании. Концентрированная Н2504 и НР медленно растворяют тантал вьш1е 150°. Он хорошо противостоит действию слабых растворов едких щелочей, однако концентрированные растворы их и расплавленные едкие щелочи заметно корродируют его. В табл. 11 приведена коррозионная стойкость тантала в различных агрессивных средах. Порошкообразный тантал легко соединяется с фтором будучи нагрет в атмосфере хлора горит, образуя пентахлорид. Образует химические соединения с рядом других элементов — металлов и неметаллов А1, Б, Ое, Ре, Со, 81, N1, 8п, Pt, Не, рь, Р, Сг, 2т. [c.54]


Смотреть страницы где упоминается термин Тантал коррозионная стойкость: [c.65]    [c.524]    [c.818]    [c.75]    [c.49]    [c.50]    [c.76]    [c.79]    [c.80]    [c.105]   
Коррозионная стойкость материалов (1975) -- [ c.0 ]

Коррозионная стойкость материалов Издание 2 (1975) -- [ c.0 ]

Коррозия (1981) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Тантал



© 2024 chem21.info Реклама на сайте