Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы водородное охрупчивание

    Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя На, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Н и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра- [c.58]


    Водородное охрупчивание в условиях статического нагружения металла приводит к снижению его длительной прочности. Это явление называют статической водородной усталостью или при наводороживании в сероводородсодержащих средах— сульфидным растрескиванием. [c.21]

    От состава и структуры сплава зависит прочность, а от ее величины — склонность к водородному охрупчиванию. Легирующие элементы изменяют фазовый состав и структуру сплавов, от которых зависят возможность зарождения трещин и скорость их распространения. Увеличение размера зерна металла повышает склонность к водородному охрупчиванию, так как при этом облегчается сток дислокаций. [c.23]

    Во всех этих случаях растрескивание вызывают атомы водорода, проникающие внутрь металла либо в результате коррозионной реакции, либо при катодной поляризации [52]. Сталь, содержащая водород в междоузлиях кристаллической решетки, не всегда разрушается. Она почти всегда теряет пластичность (водородное охрупчивание), но растрескивание обычно происходит только при одновременном воздействии высокого приложенного извне или остаточного растягивающего напряжения. Разрушения такого типа называют водородным растрескиванием под напряжением (или просто водородным растрескиванием). Трещины в основном транскристаллитные. В мартенситной структуре они могут проходить по бывшим границам зерен аустенита [52]. [c.149]

    Заменять аустенитные сплавы на ферритные (например, марки 430 или низкоуглеродистую сталь с Сг и Мо — см. разд. 18,2). Однако ферритные сплавы могут подвергаться водородному охрупчиванию и вспучиванию в некоторых средах при контакте о более электроотрицательными металлами. [c.324]

    Считается, что причина сероводородной хрупкости — проникновение в сталь водорода, образующегося в протонном виде, в результате электрохимической коррозии металла в водных растворах сероводорода. Атомарный водород способен диффундировать в кристаллической решетке металла, достигая микротрещин, пустот, где он накапливается, образует молекулярный водород, создающий по мере накопления огромное давление. Такое давление в сочетании с приложенными растягивающими напряжениями приводит к внезапным разрушениям. Подобный процесс называют водородным охрупчиванием. [c.70]

    Так как количество водорода, образующегося при взаимодействии стали с водой, пропорционально количеству металла, превращающегося в магнетит, то по количеству выделившегося водорода можно судить об интенсивности коррозии стали и о формах ее протекания. Образовавшийся водород в основном попадает в пар, однако возможно также насыщение водородом металла. В последнем случае протекание коррозии осложняется водородным охрупчиванием стали [5]. [c.18]


    Электрохимическая защита. Электрохимическая защита как метод борьбы с КР многих металлов исследуется давно. Изучались многие способы электрохимической защиты — поляризация внешним током, протекторы, анодные покрытия и т. д. Полученные при этом данные были довольно противоречивы. Большая часть исследователей пришла к выводу, что катодная защита, в особенности при небольшой поляризации останавливает процесс КР [36, 59]. При увеличении катодной поляризации часто наблюдается водородное охрупчивание [60]. Анодная поляризация в основном приводит к ускорению растрескивания сталей. Иногда и анодная защита повышает устойчивость к КР [67]. [c.75]

    С растворимостью газов в твердых металлах, особенно при повышенных температурах и давлениях, связана их газопроницаемость, что приходится учитывать при изготовлении соответствующих аппаратов. Известно негативное влияние водорода на железные сплавы — так называемое водородное охрупчивание стали. [c.233]

    Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание. [c.14]

    Водородное охрупчивание можно считать вторичным процессом электрохимической коррозии металла котлов, протекающей с водородной деполяризацией кислотной, подщламовой, пароводяной и межкристаллитной (щелочной). При этом происходит накопление в стали водорода - его концентрацию, очевидно, можно считать косвенным показателем интенсивности протекания этих видов коррозии как в отдельности, так и в их сочетании. Поэтому определение концентрации его в металле весьма целесообразно для выяснения общего хода коррозии, протекающей в теплонапряженных местах поверхности нагрева с целью установления оптимальных (с точки зрения предупреждения коррозии) водно-химических и тепловых режимов. [c.79]

    Водородное охрупчивание и сульфидное растрескивание. В условиях статического нагружения металла в агрессивной среде адсорбция водорода на поверхности металла приводит к снижению длительной прочности металла. Это явление называют статической водородной усталостью или более общим термином — водородное охрупчивание. При наводороживании в сероводородсодержащих средах это явление называют также сульфидным [c.20]

    В принципе все металлические материалы могут подвергаться электролитической коррозии. Для разрушения под действием проникшего водорода (водородного охрупчивания) необходимо наличие механических растягивающих напряжений и стимуляторов абсорбции водорода, если материалы не являются особенно высокопрочными (см. раздел 2.3.5). Химическая коррозия с потерей массы в результате образования гидридов возможна только для следующих металлов 1п, Т1, Ое, 8п, РЬ, Аз, 5Ь, В1, 5е, Те, Ро [7]. [c.47]

    Интересной областью применения является также защита тантала от водородного охрупчивания путем контактирования с металлами платиновой группы. Уменьшение водородного перенапряжения или смещение потенциала свободной коррозии в сторону более положительных значений ведет очевидно к уменьшению степени покрытия поверхности металла адсорбированным водородом и соответственно к уменьшению абсорбции [50]. [c.399]

    Как отмечалось выше газ, содержащий сероводород, может вызвать одновременно общую коррозию и коррозионное (сульфидное) растрескивание. В настоящее время механизм коррозионного растрескивания в растворах сероводорода рассматривают как разновидность водородного охрупчивания. Железо, взаимодействуя с сероводородом, на коррозирующей поверхности образует сульфид железа, специфические свойства которого способствуют более интенсивному проникновению атомарного водорода в металл. В результате этого при наличии механических напряжений от действия внешних нагрузок или остаточных напряжений созда- [c.8]

    Коррозионное растрескивание часто усилипается при наводо-роживании металла. Водород, сегрегируя в областях максимальной механической напряженности, создает дополнительные напряжения в металле. Исследования Л. А. Плавич высокопрочных сталей в равнопрочном состоянии показали, что решающим фактором, определяющим склонность сталей к водородному охрупчиванию, является характер тонкого (дислокационного) строения, [c.334]

    Водородное охрупчивание (разупрочнение) металла вследствие абсорбции водорода металлом из среды. [c.9]

    Ионы водорода в хоДе катодного процесса восстанавливаются на поверхности стали, часть из них поступает в металл и способствует его коррозионно-механическому разрушению. Установлено, что при сероводородном растрескивании сталей основная роль принадлежит водородному охрупчиванию [8]. [c.43]

    Авторы концепции водородного охрупчивания основную причину разупрочняющего воздействия среды видят в так называемой водородной хрупкости ма териалов [26, 41, 99]. Наличие в высокопрочных сталях растворенного водорода (1 см на 100 граммов металла) заметно сказывается на их прочности. Отмечено, что водород, закрепощая дислокации, уменьшает вязкость разрушения. Кроме того, наличие водорода в металле обусловливает высокие внутренние напряжения [94]. До настоящего времени еще нет полного единства взглядов на механизм водо-56 [c.56]


    При рассмотрении механизма скачкообразного подрастания трещин коррозионного растрескивания в нейтральных средах вследствие только водородного охрупчивания кардинальный вопрос о том, откуда берется в металле водород, по существу даже не ставится. Роль процесса локальной коррозии на скачкообразном этапе не учитывается [33,37,41]. [c.71]

    Чувствительность к водородному охрупчиванию значительно зависит от качества стали. Поэтому часто наблюдается различная склонность к водородному охрупчиванию сталей, близких по химическому составу. Весьма важна форма неметаллических включений в стали, особенно сульфидов. При обычной выплавке стали сульфиды имеют пластинчатую форму, при дополнительной обработке синтетическим шлаком — округлую, эллипсообразную. Испытания трубной стали с одинаковым содержанием серы показали, что вредное влияние водорода на сталь с эллипсообразными сульфидами на 10—40 % ниже, чем на сталь с пластинчатыми сульфидами. Значительно повышается стойкость стали к водородному охрупчиванию в растворах сероводорода при ее легировании редкоземельными элементами вследствие их влияния на облегчение молизацин водорода, что затрудняет абсорбцию водорода металлом. [c.23]

    Было обнаружено, что в нейтральных растворах хлоридов включения серы в прокатанную сталь действуют как инициаторы питтингообразования [36,37]. С другой стороны, отмечено, что, примесь серы в стали, содержащей более 0,01 % Си, не оказывает существенного влияния на скорость коррозии в кислотах [33, 38]. Измерения скорости проникновения водорода сквозь катодно-поляризованную. листовую сталь, содержащую игольчатые включения (РеМп)8, показывают, что НаЗ, образующийся на поверхности металла в результате растворения включений, стимулирует (промотирует) проникновение водорода в сталь. Скорость проникновения увеличивается с повышением содержания серы в пределах 0,002—0,24 % 8, но только на тех участках, где поступление На8 идет в результате растворения включений [39]. Включе-ння игольчатых сульфидов способствуют водородному охрупчиванию, которое может приводить к быстрому или постепенно развивающемуся растрескиванию, например, стальных трубопроводов [40]. [c.125]

    Нефтегазопромысловое оборудование эксплуатируется в весьма сложных условиях. Воздействие возникающих в металле растягивающих, щжлических, знакопеременных напряжений, сил трения, кавитации, абразивного износа и др. в контакте с коррозионно-агрессивной средой приводит к спещ1фическим видам коррозионного разрушения оборудования, таким, как коррозионное растрескивание, водородное охрупчивание, питтинг и др., которые в значительной мере снижают долговечность и надежность оборудования. [c.4]

    Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин [c.17]

    В случае неингибированной среды NA E величины критериев соответствуют расчетным данным теории замедленной рекомбинации, то есть происходит активный разряд ионов водорода на поверхности металла, приводящий к его наводорожива-нию и последующему водородному охрупчиванию. При введении в коррозионную среду соединений КСФ1-КСФ5 значения критериев приближаются к расчетным данным теории замедленного разряда, что свидетельствует о преобладании молекулярного водорода у поверхности металла и его удалении из среды. [c.273]

    Пусть до начала коррозионного растворения коэффициент интенсивности напряжений в элементе с краевой трещиной (с начальной длиной 1о) равен значению Кю. В процессе работы такого элемента длина трещины в результате коррозионного растворения увеличивается, что приводит к росту КИН. По истечении определенного времени I наступает неустойчивое состояние К] = К1зсс, где Кзсс - критическое значение КИН в данной коррозионной среде. В принципе, значение К1зсс учитывает действие на металл адсорбционного эффекта и водородного охрупчивания, если оно определено в условиях, способствующих их проявлению. Таковы, например, достаточные время выдержки в коррозионной среде, скорость деформации и др. Не теряя общности решения, для простоты анализа будем полагать, что КИН определяется как для полу-бесконечной пластины с краевой трещиной [199] К[ = 1,12о Л. Скорость распространения трещины опре- [c.348]

    Влияние легирующих элементов и структуры на сопротивле ние конструкционных сталей водородному охрупчиванию / С. Л Голонапенко, В. И. Зинеев, Е. Б. Серебряная, Л. В. Попопа, — Металловедение н термическая обработка металлов. 1978, № 1, с. 2—14. [c.224]

    Стали весь ма интенсивно растрескиваются в растворах кислот основная причина растрескивания сталей в сильных кислотах — водородное охрупчивание. Склонность сталей к растрескиванию в серной кислоте увеличивается с добавлением хлорида натрия [8, 19]. Существе1Ш0 снижают стойкость сталей к растрескиванию в кислотах так называемые катализаторы наводороживания (гидриды фосфора, серы, мышьяка, селена, теллура, сурьмы, висмута и другие вещества) [3,8]. Полагают, что эти вещества, снижая перенапряжение вьщеления водорода на поверхности сталей, способствуют проникновению его в металл. [c.44]

    Один из основных видов коррозионного разрушения газонефтепромыслового оборудовармя — статическая водородная усталость (СВУ), т.е. снижение длительной прочности стали в результате водородного охрупчивания в условиях статического нагружения металла. Предел статической водородной усталости, соответствующий максимальному напряжению, при котором не наблюдается коррозионного растрескивания, зависит от многих взаимосвязанных факторов химического состава, термической обработки и механических свойств стали, уровня приложенных напряжений, количества поглощенного водорода, состояния поверхности и др. Влияние этих факторов не только взаимосвязано, но в некоторых случаях и противоположно. Поэтому нельзя рассматривать предельные напряжения, при которых не проис.чодит сероводородного растрескивания, как абсолютные значения дог скаемыч напряжений. которые могут быть использованы при проектировании оборудования их следует рассматривать как сравнительные величины при сопоставлении стойкости различных металлов. [c.35]

    Состав и структура стали оказьшают на стойкость к СВУ гораздо большее влияние, чем на общую коррозию. Существенно влияет на сульфидное растрескивание углерод. С увеличением количества углерода склонность закаленных сталей к сульфидному растрескиванию растет вследствие увеличения внутренних напряжений, прочности стали. Малое количество водорода, проникающего в металл, не может вызвать достаточных для развития трещин локальных пластических деформащ1Й в прочном материале. Считается, что сталь теряет пластичность при окклюзии водорода 7-12 см на 100 г металла. Однако водородное охрупчивание может происходить даже при незначительном количестве поглощенного водорода. Так, для стали марки 4340 (предел прочности 1600 МПа) химический состав следующий. [c.36]

    Другим объяснением исследуемого разрушения является концепция водородного охрупчивания металла, предполагающая, что растрескивание возникает в результате наводороживания стали. При этом источником водорода может быть сероводород, содержащийся в транспортируемом продукте или продуцируемый суль-фатвосстаиавливающими бактериями в грунте [62, 224] углекислый газ, содержащийся в транспортируемом продукте токи катодной защиты при потенциалах выше регламентированных значений. Однако при КР, как отмечалось выше (см. раздел 1), отсутствуют характерные внешние проявления водородного растрескивания, такие как блистеринг и расслоение металла. Нанодороживание металла вследствие образования сероводорода при растворении неметаллических включений сульфида марганца в [c.89]

    Для определения водородного охрупчивания парогенерирующих труб, которое происходит без существенного коррозионного износа стенки, следует пользоваться установленной зависимостью между пределом прочности металла и коэрцитивной силой при сквозном промагничивании стенки. Металл труб с низкой коэрцитивной силой более подвержен водородному охрупчиванию с понижением предела прочности. В частности, для парогенерирующих труб солевого отсека котла ТГМ-96, подвергшихся сильному водородному охрупчиванию после 32 тыс. ч эксплуатации и имеющих пониженную коэрцитивную силу (ток размагничивания < 125 мА), предел прочности металла был [c.55]

    Сказанное вьше это лишь перечисление возможных объяснений влияния легирующих элементов иа коррозионную стойкость ниобия, которые в какой-то степени можно распространить и на сплавы других тз оплав-ких металлов. Как и другие тугоплавкие металлы, ниобий и его сплавы при работе в кислотах наводороживаются и охрупчиваются. Насьшхение ниобия водородом до 0,02—0,03% приводит к полной потере пластичности. Вторая фаза - гидриды - обнаруживается при большем содержании водорода (при 0,08%). Легирование ниобия различными элементами может изменить указанные значения и тем самым уменьшить степень его водородного охрупчивания. [c.74]

    При электроосаждении некоторых металлов возможна побочна реакция катодного выделения водорода. Образующийся атомны водород может диффундировать в металл основы и поглощаться ик Результатом этого, например, в случае высокопрочных сталей може быть водородное охрупчивание. Водород можно, однако, удалит путем термической обработки, которая соответственно снижае водородную хрупкость. [c.78]

    Под водородной усталостью понимается процесс усталостного разрушения в средах, разупрочняющее воздействие которых сводится в основном к водородному охрупчиванию сталей. На-водороживание металла происходит в результате коррозионного процесса с водородной деполяризацией или же при катодной защите конструкции, когда на ее поверхности в результате интенсивного катодного процесса восстанавливается водород. На практике водородная усталость проявляется при катодной защите различных сооружений и конструкций, при использовании деталей, подвергнутых ранее наводороживающей обработке (кислотная очистка травлением, нанесение гальванических покрытий), при зксплуагашш емкостей в газообразных средах, содержащих водород. Водородная усталость реализуется также в кислых средах [17,18]. [c.50]

    Отмечено, что увеличение содержания углерода в сталях, повышение их метастабильности термообработкой (обработка на мартенсит), а также легирование сталей элементами, ухудшающими подвижность углерода, способствует водородному охрупчиванию. В то же время возможно и водородное упрочнение металлов, обусловленное водородофазовым наклепом. Под последним понимается насыщение гидрообразующих металлов водородом с последующим фазовым Превращением, что приводит к значительному повышению предела прочности. Водородное упрочнение проявляется при Использовании палЛадия, титана и некоторых других металлов [4]. [c.50]

    В настоящее время разработаны новые высокопрочные сорта сталей, однако их широкому промышленному применеш1ю препятствует повышенная склонность этих материалов к коррозионно-механическому (усталость и растрескивание) разрушению [41]. Сложилось мнение, что этап собственно развития трещин в подобных материалах состоит из двух подэтапов чисто коррозионного медленного углубления трещины в материал вследствие растворения напряженного металла в ее вершине и более быстрого скачкообразного (дискретного) подрастания трещины. Считается, что на последнем подэтапе определяющую роль играет водородное охрупчивание материала. Наличие этих подэтапов подтверждается экспериментально [41]. [c.61]

    В С1 ге современных представлений развитие трещины коррозионного растрескивания в высокОпрочньхх закаленных сталях может протекать по двум механизмам. Вначале трещина равномерно углубляется вследствие локальной коррозии ее вершины, а затем, в результате смены механизма, развивается дискретно, т. е. трещина начинает с некоторого момента углубляться в тело металла скачками. При коррозионном углублении трещина разветвляется. При скачкообразном механизме ветвление не наблюдается, поскольку, по мнению бодашинства исследователей, определяющим в развитии трещины является водородное охрупчивание [37,40,41]. [c.70]

    Однако даже априорный анализ скачкообразного механизма развития трещин приводит к мысли, что и на данном этапе первопричиной разупрочняющего воздействия среды является корро-зионнь1Й процесс Действительно, водородное охрупчивание и коррозионное подрастание трещины взаимосвязаны, так как анодный процесс (локальная коррозия) и катодный процесс (восстановление водорода) — это сопряженные реакции. Без анодного процесса окисления металла восст1аиовление водорода на металле невозможно, так как при этом поставляются электроны, необходимые для восстановления водорода. Кроме того, гидролиз в трещине продуктов коррозии обусловливает подкисление среды, т. е. появление ионоВ водорода, которые, пройдя стадию восстановления на поверхности металла, абсорбируются металлом. Если трещины коррозионного растрескивания определенную часть своего пути развиваются скачкообразно, то для коррозионной усталости превалирует скачкообразный механизм развития треищн. [c.71]

    После очередного скачка в трещине работает активная коррозионная гальваноПара, где анод - СОП по месту микронадрыва, а катод - стенки трещины, которым отвечает стационарный потенциал по месту бывшей СОП, По истечении периода активности СОП, характеризуемого временем t, работа гальванопары угасает. Рассмотрим развитие трещины коррозионного растрескивания углеродистых сталей в 3 %-м водном растворе Na l. Анализ процессов, протекающих в трещине (см. рис, 6), дает возможность предположить следующее в моМент скачка происходит механический микронадрыв металла в вершине трещины по месту, ослабленному водородным охрупчиванием, в результате чего трещина подвигается на величину А / , После скачка трещины на величину Д/м возникает СОП, на которой усиленно протекает анодный процесс, вследствие работы гальванопары с электродами СОП - бывшая СОП, а также реализуется подкисление нейтральной среды в связи с гидролизом Продуктов коррозии. Последнее способствует протеканию катодного процесса частично с водородной деполяризацией. Активный локальный анодный процесс по всему фронту СОП после скачка ведет к расширению трещины, а также ее коррозионному продвижению на величину Д /к в глубь металла. При этом чисто коррозионное расширение трещины не превышает 2А / . [c.90]

    По мере дальнейшего углубления трещины и роста в ее вер-шше напряжений следует ожидать смещения области максимальных напряжений из зоны перед вершиной трещины непосредственно в ее вершину [33, 37, 41]. При этом очередной механический скачок трещины реализуется вперед от ее вершины. При достаточно больших напряжениях скачок начнется не при максимальных напряжениях, а несколько ращ>ше и будет проходить не мгновенно, а продолжаться во времени (вплоть до снижения нагрузки). Учитывая сказанное, есть основания полагать, что наступит VII этап развития трещины, на котором основную роль, наряду с водородным охрупчиванием, начнет играть ад-сорбщюнный фактор, т. е, адсорбционное разупрочнение. Роль коррозионного фактора существенно уменьшится, так как на данном этапе меньше Д/м, Адсорбционное понижение прочности реализуется в последнем случае в силу того, что СОП, возникающая при надрыве металла, образуется во времени. Среда, адсорбируясь на СОП по мере ее Образования, способствует разрушению металла. По-видимому, VII этап завершится разрушением металла по Месту трещины. [c.102]

    Характерно, что при катодной поляризации, которой подвергается вся поверхность металла, поляризационное смещение потенциала в вершине трещины существенно отличается от смещения потенциала на поверхности. По-видимому, чем глубже трещина, тем больше будет эта разница. Защита катодной поляризацией усложняется тем, что даже незначительные отклонения от оптимального режима поляризации могут не только существенно понизить защитный эффект, но даже вызвать ускорение развития ещины в результате водородного охрупчивания [8, 34,36]. [c.115]


Библиография для Металлы водородное охрупчивание: [c.225]   
Смотреть страницы где упоминается термин Металлы водородное охрупчивание: [c.15]    [c.151]    [c.49]    [c.43]    [c.55]    [c.42]   
Химический энциклопедический словарь (1983) -- [ c.104 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.104 ]




ПОИСК







© 2025 chem21.info Реклама на сайте