Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Люминесценция и перенос энергии представления

    Для объяснения многих явлений люминесценции, фотохимии и радиационной химии широко привлекаются представления о переносе энергии от одних молекул к другим [1, 2]. Этим понятием охватываются процессы, физический механизм которых весьма различен, а в некоторых случаях, возможно, и неизвестен. С этой точки зрения представляет несомненный интерес установление области, в которой справедливы представления о резонансном механизме переноса энергии электронного возбуждения. Вероятность переноса энергии за единицу времени от возбужденной молекулы В к молекуле А в случае дипольных переходов равна [c.105]


    За последние десятилетия благодаря успехам спектроскопии, квантовой химии и хим. кинетики стало возможным исследовать структуру и св-ва возбужд. состояний молекул и изучать фотохимические реакции с примен. теории элементарного хим. акта. Возбужд. молекулы рассматривают не просто как горячую модификацию осн. состояния тех же молекул, а как иные молекулы, для к-рых характерны свои хим. св-ва и электронное строение, изучаемые т. н. молекулярной Ф. Развитие представлений о механизме фотохим. р-ций способствовало пониманию роли фотофиз. процессов — внутр. и интеркомбинац. конверсии (беэызлу-чательные переходы молекул в иные электронные состояния той же или иной мультиплетности соотв.), безызлучатель-ного переноса энергии. Наиб, важные методы исследования фотохим. р-ций — люминесцентные (см. Люминесценция), импульсный фотолиз. [c.634]

    Представление о переносе энергии в форме эксцитона упрощает понимание ряда других особенностей люминесценции. Оно качественно объясняет, например, тушащее действие многих присадок и, в частности, элементов железной группы, когда они присутствуют в люминофоре в исчезающе малых количествах. Способность атомов разряжать эксцитоны почти неограниченна по сравнению с вероятностью захвата свободного электрона. Являясь непроходимым барьером для эксцнтонов, элементы переходных групп (за счёт незаполненных электронных оболочек) легче захватывают их, чем атомы многих активаторов. [c.292]

    Материал этой части главы разбит по разделам возбуждение, приготовление образцов, измерения и разнообразные методические приемы. Вначале рассмотрены главным образом вопросы выбора источников света, интенсивности света и выделения выбранных спектральных интервалов при помощи фильтров и монохроматоров. Кроме возбуждения действием света, существует множество других методов возбуждения, включая возбуждение рентгеновскими лучами, гамма-лучами, электронами и другими быстрыми частицами. Однако в большинстве исследований по люминесценции для возбуждения используют видимый и ультрафиолетовый свет. Поглощение света значительно более селективно, чем другие методы, а так как последние с большей полнотой рассмотрены в ряде уже опубликованных работ, то мы ограничимся здесь только первым методом. Приготовление образцов включает очистку веществ, приготовление твердых стекол, низкотемпературную методику и выращивание монокристаллов. В следующем разделе описана аппаратура для регистрации флуоресценции и фосфоресценции, для измерения времени жизни и квантового выхода. Прингсгейм [17] в своей монографии Флуоресценция и фосфоресценция дает хорошее представление о методах эксперимента, применявшихся примерно до 1949 г. Исчерпывающий обзор по спектроскопии и спектрофотометрии в видимой и ультрафиолетовой области дан Вестом [33]. Более специфичные вопросы, связанные с определением флуоресценции и фосфоресценции, источниками света, приемниками, флуориметрами, приборами для регистрации спектров флуоресценции и фосфоресценции и для измерения времени жизни и квантового выхода рассмотрены Вотерспуном и Остером [35]. Исчерпывающая библиография, собранная Липсетом [36], содержит ссылки на работы, в которых рассматриваются вопросы методики исследования переноса энергии и сходных явлений. [c.81]


    В действительности имеются два механизма экситонной люминесценции у дефектов кристаллов. Во-первых, дефекты приводят к образованию местных уровней возбуждения, которые лежат ниже, чем уровни свободного экситона. Перенос энергии к дефекту приводит к захватыванию ее и последующему испусканию, о чем уже говорилось. Во-вторых, имеется механизм, по которому свободные экситоны преобразуются в фотоны без сопутствующей этому процессу локализации электронной энергии возбуждения. Для того чтобы понять, как это происходит, надо четко представлять, что схема, в которой экситоны и фотоны рассматриваются как совершенно независимые разделенные категории, исключая момент поглощения или испускания, является только приближением. В. М. Агранович показал, что это представление появляется вследствие пренебрежения в гамильтониане запаздывающим взаимодействием электронов. Учет запаздывания , которое возникает из-за конечной скорости распространения взаимодействия (скорость света), приводит к смещению экситонов и фотонов и появлению того, что он называет поляритонами. Дефекты кристалла оказывают возмущающее действие на поляритоны, приводя, по-видимому, к усилению их фотоноподобного характера и тем самым к испусканию. Численные оценки относительной скорости этих двух процессов, выполненные для антрацена при 20° К, показывают, что более предпочтительной является вторая, нелокализованная модель, для которой скорость больше на порядок или даже выше. [c.117]


Смотреть страницы где упоминается термин Люминесценция и перенос энергии представления: [c.54]    [c.385]    [c.51]   
Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Люминесценция



© 2025 chem21.info Реклама на сайте