Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие электронное

    Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака. Поэтому ковалентная связь образуется в таком направлении, при котором это перекрывание максимально. [c.55]

    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]


    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]

    Роль хлора, обладающего высокой электроотрицательностью, заключается в повышении эффективного заряда иона Pt +, что благоприятствует донорно-акцепторному взаимодействию электронов углеводорода — лиганда с -орбиталями центрального иона. [c.256]

    В пределах одной декады переходных элементов (например, от скандия до цинка) максимальная устойчивая степень окисленности элементов сначала возрастает (благодаря увеличению числа -электронов, способных участвовать в образовании химических связей), а затем убывает (вследствие усиления взаимодействия -электронов с ядром по мере увеличения его заряда). Так, максимальная степень окисленности скандия, титана, ванадия, хрома и [c.647]

    В случае атомов или ионов, содержащих одно атомное ядро, полная энергия частицы представляет собой энергию взаимодействия электронов между собой и ядром. Электрон, вращающийся вокруг ядра по определенной орбите, обладает определенным за- [c.90]

    Притяжению молекул противодействует отталкивание, имеющее значение при малых расстояниях и обусловленное, в основном, взаимодействием электронных оболочек. Это отталкивание в совокупности с тепловым движением уравновешивает притяжение. Таким образом устанавливаются средние равновесные расстояния между движущимися (колеблющимися, вращающимися и эпизодически перемещающимися) молекулами жидкости. [c.163]


    В образовании связи я-аллильных лигандов с металлом принимают участие молекулярные орбитали, охватывающие три атома углерода. Донорно-акцепторная связь образуется за счет взаимодействия электронов аллильного лиганда с вакантными гибридными 5р-орбиталями металла, в то время как донорно-дативная связь возникает за счет вакантной разрыхляющей молекулярной орбитали аллильной группы и пар электронов, находящихся на уг-орбитали (или комбинации йдг — ру) металла. Перекрывание орбиталей, как правило, невелико и дативная связь в я-аллильных комплексах, хотя и способствует стабилизации, но не определяет ее [61]. В присутствии лигандов типа Р(СбН5)з, галогенов и неко-1 торых других стабильность я-аллильных комплексов возрастает, что объясняется низким энергетическим уровнем разрыхляющих орбиталей этих лигандов, которые принимают участие в образовании дативных связей. Стабильность комплексов я-аллильного типа [c.107]

    I. Взаимодействие электрона и позитрона [c.345]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]

    Чтобы описать взаимодействие электронного спинового момента с магнитным полем и магнитным ядром [уравнение (9.4)] изотропных систем, запишем гамильтониан как [c.32]

    Влияние указанных эффектов на спектр ЭПР зависит от того, на какую область распространяется взаимодействие электронного и ядерного [c.43]

    Это взаимодействие электронного и ядерного спинов рассматривалось в гл. 9 в разделе, посвященном контактному взаимодействию Ферми, там же дается объяснение всем принятым обозначениям. Этот эффект связан с влиянием плотности неспаренного спина, который делокализован непосредственно на ядре, исследуемом методом ЯМР. Подставляя среднюю поляризацию электронных спинов в уравнение (12.9), получаем [c.169]

    В случае ковалентных связей, создаваемых взаимодействием -электронов данных атомов, все направления связи оказываются тоже равноценными ввиду шаровой симметрии электронного облака -электронов. Но р-электроны (а также -электроны) дают связи, взаимная ориентация которых в пространстве закономерна. [c.72]

    По ряду причин данные измерений контактного сдвига часто выражаются через А—константу взаимодействия электронного спина [c.169]

    Спин-орбитальное взаимодействие подмешивает к основному состоянию возбужденные состояния которые расщепляются кристаллическим полем, и это смешивание приводит к небольшому расщеплению в нулевом поле уровней комплекса Мп . Дипольное взаимодействие электронных спинов дает меньший эффект по сравнению с подмешиванием более высоко лежащих состояний комплекса. В этом примере очень интересны орбитальные эффекты, поскольку основным состоянием является 5, и поэтому возбужденное состояние Т2 может подмешиваться только за счет спин-орбитальных эффектов второго порядка. Таким образом, расщепление в нулевом поле относительно невелико, например порядка 0,5 см в некоторых порфириновых комплексах [c.220]

    СВЕРХТОНКОЕ РАСЩЕПЛЕНИЕ, ОБУСЛОВЛЕННОЕ ВЗАИМОДЕЙСТВИЕМ ЭЛЕКТРОНОВ С МАГНИТНЫМИ МОМЕНТАМИ ЯДЕР ЛИГАНДА [c.231]

    Если магнитное взаимодействие велико, т. е. сравнимо с электростатическим взаимодействием электронов, как это имеет место для атомов и молеку.л тяжелых элементов, то электронные состояния нельзя классифицировать по полному электронному спину, и правило Вигнера вообще не будет справедливым. [c.55]

    Симметрия. В двухатомной молекуле между ядрами возникает сильное электрическое поле, направленное вдоль оси молекулы. Это направление (ось г) становится особым для молекулярного электрона и важнейшим из квантовых чисел становится магнитное квантовое число /л г = О, 1, 2,. .., 1, определяющее проекцию вектора I орбитального момента на ось молекулы. Взаимодействие электрона с осевым электрическим полем ядер значительно и зависит от абсолютной величины mi, но не от знака. Поэтому вводят квантовое число X = т,1. Состояния (МО) с разными К сильно различаются по энергии, представляя собой, по сути, отдельные энергетические уровни. В соответствии с квантовым числом X молекулярные орбитали двухатомных (и линейных) молекул обозначаются строчными греческими буквами  [c.72]


    Магнитное число Ml = О, 1, 2, L. Таким образом, для одной электронной конфигурации возможны (2L -Ь 1) состояний с различными Ml. Энергия взаимодействия электронной оболочки с электрическим полем ядер зависит лишь от абсолютной величины квантового числа Ml, обозначаемой прописной. греческой буквой Л  [c.74]

    Хемосорбция приводит к значительному понижению энергии системы в результате взаимодействия электронных уровней адсорбента и адсорбтива (своеобразное химическое, ковалентное вза- [c.638]

    В том случае, когда две молекулы находятся достаточно далеко друг от друга, влияние одного электронного облака на другое мало, и в первом приближении им часто можно пренебречь. Возникающие при этом дальнодействующие силы могут быть найдены уже в первом приближении. Если же взаимным влиянием электронных оболочек нельзя пренебречь и силы взаимодействия зависят от величины вызванного им возмущения, то необходимо приближение второго порядка. С помощью этого приближения определяется величина вклада в дальнодействующие силы за счет искажения взаимодействующих электронных оболочек, которая в первом приближении принимается равной нулю. [c.194]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    Если преобладающая часть электронного облака принадлежит двум или нескольким ядрам, это отвечает образованию двух- или миогоцентровых связей соответственно. В подобных случаях молекулярная полновая функция может быть представлена в виде линейной комбинации атомных волновых функций взаимодействующих электронов (метод линейной комбинации атомных орбиталей — МО ЛКАО). [c.57]

    В результате Гейтлер и Лондон получили уравнения, позволяющие иайти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния г между ядрами эшх атомов. Г1ри этом оказалось, что результаты расчета зависят от того, одинаковы или нротикопо-ложны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов (рис. 26, кривая а) сближение атомов приводит к непрерывному возрастанию энергии системы. В этом случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами ие возникает. При противоположно направленных спинах (рис. 26, кривая б) сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При г = система обладает наименьшей потенциальной энергией, т. е. находится в наиболее устойчивом состоянии дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов атомных электронов образуется молекула На — устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга. [c.120]

    Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные oб- aкaJ [c.122]

    Уравнение (1,18) справедливо лишь для гармонического осциллятора. Однако следует учитывать, что сближению атомов препятствует взаимодействие электронных оболочек, а при удалении атомов возвращающая сила ста1ювится не пропроциональной расстоянию. Это приводит к ангармоничному колебанию, которое описывается уравнением [c.8]

    Молекулярная орбиталь ф определяется обычно как собственная функция некоторого одноэлектронного гамильтониана, в качестве которого в принципе должен использоваться оператор Хартри —Фока (фокиан), так как именно он оптимальным образом учитывает согласованное взаимодействие электронов в молекуле. Практически же этот оператор часто [c.205]

    Может возникнуть вопрос, насколько правомерно составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Такое приближение не является слишком грубым по двум причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах, об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании химической связи. Так, полная энергия электронов для двух свободных атомов водорода равна —2-13,6 =—27,2 эВ, а изменение энергии при образовании молекулы Нг (энергия связи) составляет 4,5 эВ. Подобное соотношение характерно и для других молекул. Оно обусловлено тем, что образование связи сравнительнс мало влияет на движение электронов вблизи ядер атомов, где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при переходе от атомов к молекуле в некоторой мере учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.100]

    Где Н — гамильтониан (оператор 1 амильтона), который включае Г в себя члены, описывающие взаимодействие электронов и ядер атомов Е — энергия молекулярной орбиты — волновая функция молекулярной орбиты. [c.280]

    Хотя из обш,их соображений ясно, что нейтрализация ионов должна вносить вклад в выход продуктов радиолиза, прямые доказательства этого были получены сравнительно недавно в работе [81], где исследовалось влияние алсЕтрического поля на радиолпз метана. Полученные результаты показывают, что —30% всего водорода образуется вследствие рекомбинации поло 1 ителы1Ь[Х попов с электронами или отрицательными ионами. Последние возникают либо при взаимодействии электрона с молекулами метана е СН4 = СНд -h Н (или СНд + И )t либо за счет прямого прилипания электрона к частицам, обладающим положительным сродством к электрону. [c.197]

    Остановимся на наиболее важной составляющей энергии молекулы — электронной энергии. Так как скорость тяжелых ядер во много раз меньше скорости легких электронов, приближенно можно рассматривать движение электронов в молекуле в каждый данный момент, считая ядра неподвижными [приближение Борна — Оппенгеймера). Выбранному фиксированному положению ядер R отвечает определенная энергия электронов E3 (R), включ-ающая их кинетическую энергию, энергию взаимодействия электронов друг с другом и энергию взаимодействия электронов с ядрами. Условимся включать сюда также энергию отталкивания ядер iZ e lR. Тогда название электронная для e R) = бэл + Z Z e lR указывает, что учитывается движение только электронов, но не ядер, а фиксированное расстояние между ядрами R рассматривается как параметр. Индекс <ел при этом отбрасывается. Если расстояние между ядрами R изменится, изменится поле ядер, в котором движутся электроны, изменится и электронная энергия системы t(R). В этом смысле электронная энергия суть функция межъядерного расстояния и по отношению к движению ядер играет роль потенциальной энергии. Вид функции e(R) для двухатомной молекулы АВ изображает кривая а рис. 14, называемая потенциальной кривой. Когда атомы А и В удалены на бесконечное расстояние, электронная энергия равна сумме электронных энергий невзаимодействующих атомов А и В в основном состоянии  [c.44]

    Взаимодействие электронов проводимости с ионами металла, находящимися в узлах кристаллической решетки, обусловливает болыиую теплопроводность металла. Электроны проводимости в металлическом кристалле обладают большой подвижностью, одиако за фазовую границу металлического кристалла они не проникают. Для преодоления этой границы необходимо затратить энергию, называемую работой выхода электрона. Эта энергия может быть получена электронами в результате освенюння или нагревания металла. При освещении поверхности металла от нес отрываются электроны такое явление называют фотоэлектрическим эффектом. Очевидно, что отрыв электронов при фотоэлектрическом эффекте обусловлен энергией кванта света, падающего ка поверхность металла. [c.220]


Смотреть страницы где упоминается термин Взаимодействие электронное: [c.115]    [c.137]    [c.361]    [c.251]    [c.79]    [c.188]    [c.35]    [c.43]    [c.166]    [c.61]    [c.14]    [c.27]    [c.38]    [c.41]    [c.70]    [c.99]    [c.583]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.107 , c.115 , c.125 , c.127 , c.321 ]




ПОИСК







© 2025 chem21.info Реклама на сайте