Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент, поглощение света

    Гомонуклеарные молекулы Hj, Oj, lj и т. п. не имеют дипольного момента, и при колебаниях он не появляется. Поэтому = О и эти молекулы неактивны в спектрах поглощения и испускания. Гетеронуклеарные молекулы типа НС1, НВг, КС1 и т. д., напротив, активны в этих спектрах, так как их дипольные моменты изменяются при колебаниях, и тем сильнее, чем более они полярны. Из вида волновых функций 1 5 ол следует правило отбора для гармонического осциллятора переходы с поглощением или испусканием света возможны только между соседними уровнями  [c.159]


    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]

    В-третьих, как уже упоминалось, взаимодействие вещества с инфракрасным излучением, сопровождающееся поглощением излучения, а также испускание радиации в этой области спектра возможно для молекул, у которых вращение и колебание сопровождаются изменением электрического момента (дипольный момент). У молекул, состоящих из одинаковых атомов (Оа, N5, Нг. ..), дипольный момент равен нулю и не появляется ни при колебаниях, ни при вращении, поэтому для таких веществ отсутствует испускание или поглощение в инфракрасной области. Однако изменения колебательных и вращательных состояний могут сопровождаться электронными переходами, а также проявляются при рассеянии света. [c.252]

    Спектроскопия комбинационного рассеяния (КР), так же как ИК Спектроскопия, имеет дело с колебательными и вращательными переходами. Однако природа возникновения спектров КР иная. Данные спектроскопии КР часто дополняют информацию, полученную при изучении ИК-спектров, что расширяет сведения о строении химических соединений. Исходя из классических представлений рассеяние света возникает вследствие колебаний молекулярного диполя, индуцированного переменным электрическим полем падающей на вещество электромагнитной волны. Правилами отбора предусматривается, что колебание активно в спектре КР, если оно сопровождается изменением поляризуемости молекулы, тогда как условием возникновения ИК-спектра поглощения является изменение собственного дипольного момента при колебании молекулы. [c.170]

    Квант поглощаемой (или испускаемой) лучистой энергии определяется, вообще говоря, изменением этих видов энергии. Изменение только вращательной энергии (при постоянной колебательной и электронной) имеет место в так называемом вращательном или ротационном спектре молекул. Вследствие того, что величина кванта вращения мала, вращательные спектры лежат в инфракрасной части спектра. Так как испускание или поглощение света возможно лишь в случае периодического изменения дипольного момента, то вращательные спектры имеют лишь полярные молекулы. [c.524]


    Приближение гармонического осциллятора достаточно корректно для описания основного колебания, т. е. перехода от и = 0 к 0=1. Помимо требований об изменении дипольного момента при ИК-переходах это приближение приводит еще к одному правилу отбора для поглощения света А1 = + 1. Поскольку при комнатной температуре большинство молекул находится в состоянии с и = 0. наблюдается практически только основное колебание. Нарушения этого правила связаны с ангармоничностью. Переходы ио 02-, ио- 1>з носят название первого и второго обертонов. Интенсивность первого обертона на порядок, а второго — на два порядка ниже интенсивности основного перехода. [c.268]

    Интенсивность полос поглощения. Для аналитических целей широко используют спектры поглощения веществ в ультрафиолетовой, видимой, и ближней инфракрасной областях. Появление этих спектров связано с электронными или колебательными переходами. Обычно спектры поглощения получают при комнатной температуре, когда практически все молекулы находятся в невозбужденном колебательном и электронном состояниях. Поэтому вероятность поглощения фотона и перехода в возбужденное состояние зависит только от свойств самой молекулы — величин дипольного момента и соответствия правилам отбора. Чем чаще совершается такой переход, тем сильнее поглощение света данной длины волны, тем больше интенсивность полосы поглощения. [c.313]

    Электронный переход может быть разрешен не для всех составляющих дипольного момента. Возможны ситуации, когда одна из проекций дипольного момента перехода, например на ось х, равна нулю. Если ориентировать молекулы определенным образом (например, под действием электрического или магнитного поля, в кристаллах и т. д.), то поглощение света будет существенно зависеть от его поляризации. Таким образом, возникает еще одна экспериментальная характеристика полосы поглощения — поляризация перехода. Количественной мерой поляризации перехода служит угол а, определенный из соотношения [c.245]

    Спектры атомов характеризуются не только величинами энергий поглощаемых или излучаемых квантов света, т. е. их частотами, но и вероятностями этих процессов. Последние определяют интенсивности наблюдаемых полос поглощения (испускания). Вероятность электронного перехода (сила осциллятора) из состояния Ч г = Ф т(Л Э, ф) в = п 1 т (г, 0, ф) зависит линейно от энергии перехода и квадратично от величины дипольного момента перехода Ом (формула Малликена — Рике)  [c.39]

    При поглощении кванта света молекула переходит в электронновозбужденное состояние, в котором существенно меняются такие свойства, как геометрия, электронное распределение, реакционная способность и др. Так, например, молекула формальдегида Н2С = 0, плоская в основном состоянии, при возбуждении меняет геометрическую структуру на пирамидальную с внеплоскостным углом 35°. Дипольный момент 4-амина-4 -нитростирола в основном состоянии равен 6,80, а в первом синглетном возбужденном состоянии он становится равным 28,50, что свидетельствует о существенном перераспределении электронной плотности. В нафталине а-положение в 50 раз реакционноспособнее р-положения. При возбуждении наблюдается нивелирование реакционной способности а- и 3-положений. [c.289]

    Различие между оптическими антиподами обнаруживается в их отношении к поляризованному свету при исследовании с помощью поляриметра антиподы вращают плоскость поляризации света на одинаковый угол, но в противоположных направлениях. По обычным физическим константам — точкам плавления и кипения, плотности, дипольным моментам, спектрам поглощения — оптические антиподы различать нельзя физические свойства их одинаковы. [c.73]

    Уравнение (1.73) аналогично уравнению (1.47). Из него следует, что сильное резонансное взаимодействие возможно только при отличном от нуля дипольном моменте перехода, связанном с излучением или поглощением фотона А это как раз и имеет место, если соответствующий переход наблюдается в спектрах испускания или поглощения света. Когда полосы в спектрах испускания и поглощения молекул с и й перекрываются лишь частично, резонансное взаимодействие ослабевает. Если полосы не перекрываются, резонансный обмен энергий может наблюдаться при непосредственных контактах ( столкновениях ) молекул. [c.34]

    При поглощении света молекулы переходят в электронно-возбужденное состояние. При этом физические и химические свойства молекул изменяются по сравнению с основным состоянием. Меняются дипольный момент, 52-геометрия, распределение электронной плотности. Молекула в возбужденном состоянии обладает иной реакционной способностью, что проявляется не столько в ускорении химических реакций, сколько в ином направлении химического процесса с образованием других продуктов. [c.225]

    В 3 гл.III уже было показано, что вероятность испускания или поглощения света, т.е. вероятность перехода, вынуждаемого внешним монохроматическим электромагнитным полем, пропорциональна квадрату модуля дипольного момента перехода, а для плоскополяризованного излучения при фиксированной ориентации молекулы - квадрату модуля соответствующей компоненты дипольного момента. Поэтому, если матричный элемент дипольного момента перехода по симметрии обращается в нуль, вероятность перехода будет также равна нулю. В таких случаях говорят, что переход запрещен по симметрии, в противном же случае говорят о разрешенных переходах. Установление только лишь на основании соображений симметрии того, являются ли переходы из каждого заданного состояния в состояния той же или другой симметрии разрешенными или запрещенными, носит название отбора переходов, а потому совокупность общих утверждений о том, какие переходы запрещены по симметрии (все же остальные, очевидно, разрешены), носит название правил отбора по симметрии [c.228]


    Таким образом, чтобы понять, как происходит поглощение света, нужно иметь представление об энергетических уровнях молекул. Необходимым условием поглощения света является не только совпадение энергии кванта с разностью 2 — 1, но и изменение дипольного момента молекулы при переходе последней с одного энергетического уровня на другой. Только в этом случае электрическое поле световой волны будет взаимодействовать с молекулой. Еще одно ограничение, налагаемое на процесс поглощения света, связано с симметрией волновой функции, соответствующей каждому из данных энергетических уровней. Квантовомеханическое рассмотрение показывает, что переходы между одними энергетическими уровнями разрешены, тогда как между другими запрещены. Хотя изложение этих вопросов выходит за рамки данной книги, читатель должен сознавать, что лежащие в их основе квантовомеханические правила отбора являются определяющим фактором поглощения света веществом. [c.8]

    Дипольный момент перехода имеет размерность длины (обычно его выражают в ангстремах) его можно представить как меру смещения зарядов в процессе перехода. Свет наиболее эффективно поглощается в том случае, когда направление его поляризации (т. е. направление вектора напряженности электрического поля) и направление момента перехода совпадают. В этом легко убедиться, измеряя поглощение света кристаллами. Как и инфракрасные спектры поглощения ориентированных пептидных цепей (рис. 13-3), электронные спектры кристаллов обнаруживают четко выраженный дихроизм. [c.19]

    Флуоресцентное излучение сложных молекул (в частности, красителей) поляризовано даже при естественном возбуждающем свете. Теория поляризованной люминесценции детально разработана Вавиловым [162] (см. также [163]). Возбуждающий свет поглощается молекулами, определенным образом ориентированными по отношению к электрическому вектору Е световой волны. После поглощения энергия излучается в результате другого электронного перехода, которому отвечает, вообще говоря, иная поляризация в молекуле, т. е. иное направление дипольного момента перехода. Люминесценция поляризована, если время жизни возбужденного состояния, т. е. время передачи энергии от поглощающего к излучающему диполю, мало по сравнению с временем переориентации молекулы. [c.321]

    Ранее уже было показано, что при реакциях в растворах полярность растворителей очень сильно влияет на их способность сольвати-ровать полярные частицы или ионы и, следовательно, на величины К, а также к. Во многих сериях физические константы растворителей (диэлектрическая проницаемость, дипольный момент, показатель преломления) не коррелируют с /Сг или Эти константы поэтому не подходят в качестве меры полярности растворителей. Параметр У используют в качестве эмпирического параметра относительной полярности. Таким образом, вода оказывается полярнее уксусной кислоты. Величину У можно определить лишь для небольшого числа растворителей, в которых возможно проведение реакций 5л 1. Однако существует целый ряд других измеряемых явлений, например поглощение света определенными красителями, зависящих от полярности растворителя. Такого рода измерения возможно осуществить уже в большинстве растворителей.  [c.176]

    Так как при поглощении кванта света происходит электронное возбуждение, молекула приобретает дипольный момент, а с ним и активность в СКР. Поэтому здесь становятся активными колебания и в неполярных молекулах, не проявляющие себя в колебательно-вращательных спектрах. Таким способом были определены характеристические частоты колебаний, межатомные расстояния и другие молекулярные характеристики различных связей в молекулах, например, -0-Н, -8-Н, =С-Н, >С=С<, >С=С< и т. д. Постоянство значений этих характеристик связей в различных соединениях позволяет использовать их для определения структуры химических соединений, качественного и количественного анализов. [c.224]

    Оптически активные материалы — это среды, обладающие естественной оптической активностью, т.е. способностью среды вызывать вращение плоскости поляризации проходящего через нее оптического излучения (света). Впервые оптическая активность была обнаружено в кварце, а затем в чистых жидкостях, растворах и парах многих веществ. Оптически активные материалы разделяют на правовращающие (положительное вращающие) и левовращающие (отрицательное вращающие). Это условное деление теряет смысл лишь вблизи полос собственного (резонансного) поглощения среды. Некоторые вещества оптически активны лишь в кристаллическом состоянии, так что их оптическая активность — свойство кристалла в целом, а не определяется строением отдельных молекул. Современная теория оптической активности учитывает взаимодействие электрических и магнитных дипольных моментов, наведенных в молекуле полем проходящей волны, а также дисперсию — зависимость показателя преломления среды от длины световой волны. Дпя нормальной оптической активности показатель преломления увеличивается с ростом длины волны. [c.256]

    Мероцианин относится к группе так называемых потенциалзависимых красителей. Изменение поглощения таких веществ в зависимости от приложенного потенциала объясняется особенностями структуры красителя. Молекула красителя может вытесняться электрическим полем из мембраны. При этом изменение поглощения обусловлено тем, что величины поглощения хромофора в липидном окружении мембраны в водной среде клетки отличаются между собой. Если речь идет о красителе, молекула которого обладает дипольным моментом, на его ориентацию и, следовательно, поглощение света влияет приложенный потенциал. [c.162]

    С помощью спектров комбинационного рассеяния света и спектров поглощения в инфракрасной области, а также путем измерения дипольных моментов и теплоемкостей было установлено, что 1,2-дихлорэтан представляет собой смесь трех конформаций одной с противостоящими атомами (I) и двух скошенных (III и V), [c.442]

    Однако ни один из этих фактов не служит однозначным доказательством существования сверхсопряжения в основном состоянии изолированной молекулы. Действительно, а) укорочение связей объясняется, по крайней мере частично, изменением гибридизации б) не следует ожидать, что а-связи между двумя р -гибридизованными атомами углерода или между и 8р гибридизованными атомами С будут обладать такой же энергией, как а-связи между двумя хр -гибридизованными атомами в) 5р -гибридизованный атом более электроотрицателен, чем 5/ -гибридизованный атом, вследствие чего а-связи будут приобретать небольшие дипольные моменты, даже если нет никакой л-делокализации [311] г) при поглощении света мы имеем дело с разностью энергий в основном и возбужденном состояниях, так что никаких определенных выводов нельзя сделать о каком-либо из этих состояний в отдельности д) реакционная способность лишь частично определяется свойствами изолированной невозмущенной молекулы, но весьма существенно зависит от легкости, с которой молекула может быть выведена из основного стационарного состояния, причем многие характеристики переходного состояния совершенно от" 1 ны от характеристик изолированных реагентов. [c.385]

    Так как все направления одинаково вероятны, то в отсутствии пол эта анизотропия отдельных молекул в общей среде незаметна. Среда изотропна, отношение постоянных Ai , определяющих интенсивность поглощения, во всех направлениях одно и то же. Только при действии, внешнего электрического поля вся среда становится анизотропной. Молекулы, как обладающие дипольным моментом, так и не обладающие им, приобретают направленность не имеющие дипольного момента вследствие анизотропии поляризуемости — по оси наибольшей поляризуемости, а диполи, существовавшие заранее, — в направлении поля. Вследствие такой ориентации отношение интенсивностей поглощения становится различным в различных направлениях. На световой луч, колебания электрического вектора которого происходят параллельно полю, оказывают влияние главным образом те колебания, которые характеризуются величиной А.. На световой луч, колебания которого происходят в перпендикулярном к полю направлении, влияют частоты, определяемые Aj и Aj. Если направить линейно поляризованный световой луч перпендикулярно к наложенному однородному электрическому полю, то в зависимости от того, происходят ли колебания его электрического вектора параллельно или перпендикулярно к полю, скорость распространения света в среде будет различной. Следовательно, будут различными и соответствующие показатели преломления Пр и Пв- Мы имеем  [c.98]

    Мы не можем закончить обсуждение этого вопроса однозначным выводом. С одной стороны, ИК-спектры ориентированных образцов в поляризованном свете, несомненно, полезны при отождествлении колебательных полос и при грубом определении ориентации групп в молекулах. С другой стороны, имеется достаточно оснований, чтобы соблюдать осторожность при детальной количественной интерпретации результатов. Даже в случае нафталина, когда взаимодействие между молекулами в кристалле относительно мало, наблюдаются отклонения от модели ориентированного газа [1636]. В кристаллах с Н-связью межмолекулярные взаимодействия гораздо сильнее, а коэффициент поглощения ИК-полос испытывает анизотропные возмущения за счет Н-связи, поэтому такие отклонения должны быть еще больше. Как отметили Хаггинс и Пиментел [979], дихроизм полос валентных колебаний определяет ориентацию связи только в случае линейной Н-связи, когда интенсивность полосы валентного колебания усилена за счет индуцированного дипольного момента, направленного вдоль связи А — Н. В тех же случаях, когда линейность Н-связи не доказана, необходимо иметь в виду, что приращение дипольного момента может быть параллельно связи [c.106]

    В общем ориентация не играет никакой роли в спектрах поглощения, поскольку абсорбирующие молекулы не имеют определенной ориентации. В спектрах поглощения ориентированных молекул исчезают колебания, дающие изменение дипольных моментов, параллельных пучку света. Ориентация молекул имеет одновременно преимущества и недостатки. Она еще более усложняет интерпретацию, поскольку в спектре не фигурируют весьма важные полосы. В то же время эти эффекты могли бы давать информацию о тех исследуемых молекулах, которые представляют основной интерес при изучении химии поверхности. [c.96]

    Интенсивность полосы поглощения в ИК спектре зависит от изменения дипольного момента молекулы для соответствующего колебательного перехода. Момент перехода имеет свойства вектора, поэтому при поляризации падающего на образец излучения уровень поглощенной энергии зависит от угла между направлением момента перехода данного колебания и направлением электрического вектора электромагнитной волны. В связи с этим при работе в поляризованном свете появляется еще один параметр —дихроизм, который наряду с частотой, интенсивностью и формой колебания может быть использован для анализа структуры полимеров с помощью И К спектроскопии. [c.14]

    Прежде всего, необходимо напомнить, что поглощение поляризованного света хромофором максимально, когда плоскость поляризации света параллельна особой оси хромофора, называемой электрическим дипольным моментом (см. гл. 16). Обычно хромофоры беспорядочно ориентированы (это, несомненно, справедливо для растворов) следовательно, вероятность поглощения возбуждающего поляризованного света пропорциональна соз в где 0 — угол между плоскостью поляризации и электрическим дипольным моментом. Кроме того, плоскость поляризации испускаемого света определяется не дипольным моментом поглощения, а собственным дипольным моментом перехода (который обычно не параллелен дипольному моменту поглощения), и вероятность испускания флуоресценции с плоскостью поляризации под углом ф к дипольному моменту перехода пропорциональна 81п20. Учитывая эти вероятности, получим, что, если поглощающие группы расположены беспорядочно (но стационарно) и два диполя не параллельны, поляризация Р флуоресценции < /2- (Фактически, даже если поглощающие группы совершенно выравнены по отношению к плоскости поляризации возбуждающего света, величина Р<1 благодаря 51п20.) Тот факт, что Р всегда <1, называется деполяризацией флуоресценции. [c.438]

    Внутреннее вращение —это процесс, состоящий из крутильных колебанвй внутри потенциальных минимумов с перескоками время от времени между поворотными изомерами. Для молекулы этана с высотой барьера 13 кДж/моль частота перескоков равна при 20 °С примерно 10 ° с , что практически воспринимается как свободное вращение. Равновесные свойства молекул (такие, как дипольный момент, оптическая активность, форма макромолекул и т. д.), представляют собой результат усреднения по всем поворотным изомерам. Отдельные молекулярные характеристики, проявляющиеся за время, меньшее времени жизни поворотных изомеров позволяют наблюдать поворотные изомеры и доказывать их существование. Например, о поворотных изомерах можно судить по спектральным линиям, частоты которых различны для различных поворотных изомеров. Так, поворотные изомеры были в 1932 г. открыты с помощью спектров комбинационного рассеяния. В настоящее время поворотные изомеры обнаруживаются как по спектрам комбинационного рассеяния света, так, особенно, по инфракрасным спектрам поглощения. [c.136]

    Колебательно-вращательный спектр называют также ин -фракрасным спектром. Такие спектры очень разнообразны, особенно в случае свободных молекул (в газах при уменьшенном давлении). Разрешающая способность обычного спектрального прибора слишком мала для разделения индивидуальных линий, вызванных вращательными Переходами. При повышении давления или при конденсировании фаз эти линии исчезают, так как продолжительность существования отдельного вращательного состояния настолько сильно изменяется. при соударениях молекул, что наблюдается уширение и перекрывание линий. Спектры в ближней инфракрасной области 1(Л от 1000 до 50 000 нм) обусловлены колебаниями атомов. При этом, различают колебания вдоль валентных связей атомов (валентные) и колебания с изменением валентных углов (деформационные). Колебания возникают, если поглощение электромагнитного излучения связано с изменением направления и величины дипольного момента молекул. Поэтому молекулы, состоящие, например, из двух атомов, не могут давать инфракрасные спектры. Симметричные валентные колебания молекул СОг также нельзя возбудить абсорбцией света. Отдельные группы атомов в молекулах больших размеров дают специфические полосы поглощения, которые практически не зависят от строения остальной части молекулы. Этот факт используЮ Т для идентификац,ии таких групп. В симметричных молекулах колебания одинаковых групп энергетически равноценны и поэтому вызывают появление одной полосы поглощения. По такому упрощению ИК-спектра можно сделать вывод [c.353]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Согласно квантовой механике излучение (поглощение) происходит только при переходе из одного стационарного состояния в другое. При этом изменяется распределение электронной плотности, что с классической точки зрения отвечает появлению дипольного момента в акте перехода. Анализ показывает, что атомная (молекулярная) система под влиянием возмущения, изменяющегося во времени, например под влиянием периодически изменяющегося электромагнитного поля (света), может совершать переходы из одного стационарного состояния в другое, пог.нощая при этом квант энергии г = км = = Е"—Е . Время перехода ничтожно коротко. Время жизни в возбужденном состоянии около 10 с (за исключением особых случаев). Возвращаясь в основное состояние, атом (молекула) изучает квант с энергией е = /IV, и в спектре испускания наблюдается линия с частотой [c.35]

    Электронное возбуждение влияет на дипольные моменты не только путем изменений в геометрии молекулярного скелета, но и через перераспределение самих электронов. Определяя это распределение, дипольные моменты таким образом предполагают возможное химическое поведение возбужденных состояний. Изменения в дипольном моменте при возбуждении можно установить по влиянию полярных растворителей на спектры поглощения и флуоресценции и по воздействию приложенных электрических полей на деполяризацию флуоресценции, возбужденной поляризованным светом. Все эти изменения могут происходить как в сторону увеличения, так и в сторону уменьшения величины дипольных моментов. Например, в формальдегиде (метаноле) дипольный момент уменьшается от 2,3 дебая в основном состоянии до 1,6 дебая в состоянии ( , я ), тогда как для бензофенона эти значения составляют 2,9 и 1,2 дебая в основном и возбужденном состояниях соответственно. Уме1[ьше-ние дипольных моментов определяется уменьшением поляризации связи С = 0 в возбужденной молекуле. В то же время дипольный момент ароматической молекулы, такой, как 4-нитроанилин, при возбуждении увеличивается от 6 до 14 дебая. Это происходит в значительной мере благодаря процессам переноса заряда в возбужденном состоянии можно ожидать, что полностью биполярная структура 4-нитроанилина, с полностью отрицательными зарядами на каждом кислороде и полностью положительными зарядами на каждом азоте, должна иметь дипольный момент около 25 дебая. [c.150]

    Спектр КР, как правило, представляет собой колебат. спектр. В области малых значений v, могут проявляться переходы между вращат. уровнями (вращат. спектры КР), реже электронные переходы (электронные спектры КР). Т. обр., частоты рассеянного света являются комбинациями частоты возбуждающего света и колебат. и вращат. частот молекул. При обычной т-ре стоксовы линии значительно интенсивнее антистоксовых, поскольку б. ч. молекул находится в невозбужденном состоянии при повыщении т-ры интенсивность антистоксовых линий растет из-за частичного теплового заселения возбужденных колебат. состояний Е . Интенсивность стоксовых линий КР пропорциональна (Vq — V,) при Vq V3, (у,д-частота электронного перехода), а при Vg -> Узд резко возрастает (резонансное КР). Для каждой конкретной линии КР интенсивность-ф-ция поляризуемости молекул (а), в отличие от ИК поглощения, где интенсивность-ф-ция дипольного момента молекулы (ц). Значение наведенного дипольного момента определяется выражением [c.437]

    Поляризация. Л обычно частично поляризована даже в случае изотропных образцов и возбуждения неполяризо-ванным светом, если угол между направлениями наблюдения и возбуждения отличен от нуля. Наиб, степень поляризации Л. наблюдается в тех случаях, когда направления возбуждения х, наблюдения у и поляризации возбуждающего света г перпендикулярны друг другу, и определяется отношением интенсивностей и 1 компонент Л., поляризованных в направлениях гид соответственно. Величина Р = — 1,)/(К + Iх) наз. степенью поляризации, а г = (1 г — /,)/(/, + Их) = З/ ДЗ -/ )-анизотропией Л. Поляризация Л. обусловлена анизотропией дипольных моментов переходов Л/,у для поглощения и испускания и зависит от угла а между ними по ур-нию Лёвшина- Перрена  [c.616]

    Вероятность переходов с испусканием илн поглощением излучения определяется прежде всего квадратом матричного элемента электрич. дипольного момента перехода, а при более точном рассмотрении - и квадратами матричных элементов магн. и электрич. квадрупольного моментов молекулы (см. Квантовые переходы). При комбинац. рассеянии света вероятность перехода связана с матричным элементом наведенного (индуцированного) дипольного момента перехода молекулы, т.е. с матричным элементом поляризуемости молекулы. [c.119]

    Для того чтобы качественно интерпретировать обусловленные растворителем сдвиги полос поглощения в УФ- и видимом диапазонах, при математическом описании системы следует учитывать, во-первых, мгновенный переходный дипольный момент молекул растворенного вещества при поглощении ими света, во-вторых, изменение постоянного дипольного момента молекул растворенного вещества при переходе из основного состояния в возбужденное, в-третьих, индуцированное растворителем изменение дипольного момента молекул растворенного вещества в основном состоянии, в-четвертых, принцип Франка—Кондона [69]. Бейлисс и Макрэ предложили различать в растворах четыре предельных варианта внутримолекулярных электронных переходов [69, 318]  [c.420]

    Эти формулы справедливы для молекул в основном, электронно певозбужденном состоянии О, вдали от полос поглощения с частотами 0) = (Оо1. Здесь (О — круговая частота падающего света, с — скорость света, п = й/2л, к — постоянная Планка, Ро — элек-трически дипольный момент перехода (см. с. 142), ш о — магнитный дипольный момент перехода. Символ 1т показывает, что [c.151]

    Следовательно, такие эффекты поляризации сами по себе не являются доказательством существования сверхсопряжения. К сожалению, мы не можем оценить изменения [л в зависимости от гибридизации и поэтому нельзя установить, можно ли передать полностью наблюдаемый дипольный момент пропилена с помощью уравнения (5-5). Даже тот факт, что 1-метилбутадиен имеет больший момент, чем пропилен, нельзя рассматривать как доказательство значительности резонанса, ибо это отличие может быть обусловлено поляризацией я-электронов под влиянием соседней полярной связи СНз—С. (Поляризуемость— величина, связанная теоретически, как и поглощение света, с возбужденными состояниями молекулы бутадиен обладает гораздо большей поляризуемостью, чем этилен, так как его энергия возбуждения меньше.) Более того, можно предполагать, что разность моментов ацетальдегида и формальдегида была бы гораздо больше, если бы полярность пропилена вызывалась только резонансным взаимодействием [см. выражение (5-1)], поскольку соответствующая дипо-лярная резонансная структура в случае ацетальдегида должна иметь гораздо большее значение из-за большей электроотрицательности кислорода по сравнению с углеродом. Разность (0,45 О) между моментами ацетальдегида и формальдегида не намного превышает момент (0,340) пропилена. Даже если учесть то, что резонансный момент [ср. равенство (5-3)] и момент связи С = 0 следует складывать как векторы, то все же резонансный момент в ацетальдегиде составит только половину момента пропилена, так что различие остается незначительным. [c.87]


Смотреть страницы где упоминается термин Дипольный момент, поглощение света: [c.509]    [c.306]    [c.96]    [c.445]    [c.248]    [c.286]    [c.22]    [c.478]   
Биохимия Том 3 (1980) -- [ c.8 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент



© 2024 chem21.info Реклама на сайте