Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий иодистый, в качестве катализатор

    Присоединение хлористого водорода по двойной связи, как отмечалось выше, происходит труднее, чем присоединение бромистого и иодистого водорода. Для ускорения реакции применяют нагревание и катализаторы. В качестве катализаторов используют соли железа, кобальта, никеля или алюминия. В некоторых случаях процесс ведут под давлением. [c.62]


    При действии 2 моль иода получается также два изомера — 2,4-дииоддекаборан и второй, строение которого окончательно не установлено, но известно, что один атом иода в нем находится в положении 5. При действии большого избытка иода получаются высокоиодированные продукты, содержашие 10—12 атомов иода в молекуле. Однако иодистый бор не образуется. Иодирование, так же как и бромирование, декаборана может быть проведено при комнатной температуре в растворителе (например, сероуглероде) в присутствии катализатора — хлорида алюминия. В качестве иодирующего агента может быть применен хлористый иод [112, 113]. [c.329]

    Алкилирование декаборана по Фриделю—Крафтсу может быть проведено с хлористыми, бромистыми и иодистыми алкилами в среде растворителя (сероуглерод, циклогексан, пентан и др. углеводороды, керосин) или без такового [130—137]. Реакцию обычно проводят при 70—90° С, иногда при комнатной. С легколетучими галогенидами (СНзС1, С2Н5С1) реакцию проводят под давлением. В качестве катализатора чаще всего пользуются хлоридом алюминия (применяются также бромид алюминия, хлориды цинка, [c.332]

    В ряде патентов описано получение бензальдегида по реакцин Гаттермана—Коха при повышенных давлениях . В этом случае обходятся без добавления хлористой меди и других активаторов, иногда также без добавления хлористого водорода . Рекомендуется применять в качестве катализатора хлористый алюминий с примесью небольших количеств хлористого титана -8, а также добавки, наряду с хлористым титаном, небольших количеств хлористого водорода или серной кислоты - Есть указания на то, что прибавление небольших количеств бензальдегида , серного эфира или фурфурола или же комплекса бензальдегида с хлористым алюминием 2- 3, оставшегося от предыдущей загрузки, способствует образованию бензальдегида. Желательно также предварительно приготовить продукт взаимодействия безводного хлористого или иодистого алюминия с окисью углерода и хлористым водородом в присутствии меди . Г. И. Дешалит , для снижения расхода хлористого алюминия и обеспечения возможности проведения процесса в аппаратуре непрерывного действия, рекомендует применять хлористый алюминий предварительно измельченный в бензоле до частиц величиной порядка тысячных долей миллиметра. В 1949 году были опубликованы работы по исследованию термодинамики и кинетики реакции получения бензальдегида по методу Гаттермана— Коха. На основе полученных результатов сделано заключение о механизме реакции (см. стр. 285). Пример термохимического расчета реакции образования бензальдегида из бензола и окиси углерода приведен в книге Р. Беннера . [c.280]


    Получение три-м-пропилалюминия [39]. В автоклав, промытый азотом, помещено 800 г крупнозернистой алюминиевой пыли и 20 г иодистого дипропилалюминия туда же добавлено 600 г жидкого пропилена и введен водород до давления 300 ат. Нагревание при 90°С с энергичным перемешиванием привело к падению давления оно падает быстро при температуре выше 100° С по истечении 12 час. давление установилось равным 50 ат. Продукт реакции охлажден и выгружен. Получено 600—650 е жидкости. После удаления легких погонов и фракционирования выделено 400 г трипропилалюминия с т. кип. 100° С/13 мм, содержащего следы иода. В остатке продукт, содержащий иод, перегоняющийся при 110— 140° С/0,02 жж последний может быть использован в качестве катализатора. Т. кип. А1(п-СзН7)з 75—80° С/1 мм. [40] 85—90° С/0,6 жж [41], 65° С/15 жж [30], 82—84° С/2 жж [42] 67° С/0,5 жж [43] 65° С/0,1 мм [44] 56° С/0,2 мм [15]. Изучен пиролиз три-м-пропил-алюминия [27]. [c.321]

    До настоящего времени в ходу лабораторная посуда, электрохимические электроды и нерастворимые аноды из платины. Еще не так давно большое количество электрических печей сопротивления изготовлялось с платиновой обмоткой (ныне платиновая обмотка с большим успехом заменяется жаростойкими сплавами на железной основе с хромом и алюминием). До настоящего времени платина довольно часто применяется для термопар и неокисляющихся электроконтактов. В виде сплавО В платина применяется для фильер при производстве искусственного волокна. Используе 1ся платина также в качестве контакта и катализатора при окислении аммиака в азотную кислоту. В некоторых химических производствах применяют обкладку платиновыми листами (толщиной не менее 0,1 мм) аппаратов и отдельных деталей приборов, работающих в наиболее агрессивных средах. Плагина стойка во многих минеральных и во всех органических кислотах и едких щелочах. Однако смесь соляной и азотной кислот, а также смесь соляной кислоты с другими сильными окислителями разрушают платину, хотя и заметно медленнее, чем золото. Чистые галогено-водородные кислоты при нормальных температурах почти не действуют на платину, однако при нагреве начинают воздействовать (причем более сильно бромисто-водородная и иодисто-водород-ная). Свободные галогены при высоких температурах также воздейст вуют на платину. Платина не окисляется ори нагреве на воздухе и з кислороде до температуры плавления, однако подвергается разрушению даже при гораздо более низких температурах в атмосферах, содержащих СО, или в контакте с углем, при одновременном наличии хлора или хлористых солей, следствие способности образовывать летучие карбонил-хлориды платины. [c.577]


Смотреть страницы где упоминается термин Алюминий иодистый, в качестве катализатор: [c.201]    [c.214]    [c.103]   
Безводный хлористый алюминий в органической химии (1949) -- [ c.890 ]




ПОИСК







© 2025 chem21.info Реклама на сайте