Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липид-белковые взаимодействия

    Метод моделирования и получения искусственных мембран основан на получении и исследовании моно- и бимолекулярных липидных слоев, везикул, липосом и протеолипосом. Сущ ествует два основных типа искусственных мембран классические плоские и сферические мембраны различного размера. Для получения искусственных мембран используют различные фосфатиды, нейтральные глицериды, смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки. Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, со-стоящ ие из белков и липидов, стали получать в 60-е гг. термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов. В липосомы включают митохондриальные компоненты и изучают на таких модельных системах процессы генерации энергии в клетках. Ультра-тонкие искусственные мембранные структуры — полислои Лен-гмюра—Бложе (ПЛБ) — применяют для получения био- и иммуносенсоров. Создаются ПЛБ с иммобилизованными ферментами и компонентами иммунологических систем. При использовании смешанных липид-белковых пленок ПЛБ получают информацию о функционировании белков и о липид-белковых взаимодействиях в мембране. Результаты изучения физических характеристик, проводимости, проницаемости и других свойств искусственных липидных мембран имеют большое зна- [c.216]


    Липид-белковые взаимодействия в мембранах [c.124]

    Липид-белковые взаимодействия в мембранах 124 Литература 125 [c.6]

    Липид-белковые взаимодействия. В основе данных взаимодействий лежат межмолекулярные дисперсионные и электростатические силы, водородные связи или другие эффекты связывания. Липид-белковые взаимодействия и обусловленные ими явления условно классифицируют следующим образом взаимодействия белок — липидный монослой взаимодействия белок — липидный бислой липид-белковые взаимодействия в мембранах, включающие липид-зависимые ферменты. [c.59]

    Спектроскопические методы, в частности ЭПР, ЯМР и флуоресцентный все чаще применяются для изучения липид-белковых взаимодействии в мембранах. Внутренние мембранные белки могут быть экстрагированы из мембраны с помощью органических растворителей или (лучше) детергентов и очищены. Неоднократно было успешно продемонстрировано, что для восстановления биологической функции белка его необходимо ввести в мембрану определенного липидного состава. [c.124]

    Для изучения липид-белковых взаимодействий в таких реконструированных системах был применен метод спектроскопии ЭПР [35]. Цитохромоксидаза была очищена и отделена от ассоциированного с нею липида экстракцией растворителем. Путем обратного титрования липидом, содержащим спин-меченный зонд (см. разд. 25.3.5), показано существование слоя липида, прочно связанного с белком (рис. 25.3.9). Кроме того продемонстрировано, что для проявления ферментной активности необходимо существование такого пограничного слоя, состоящего из 50 липидных молекул на молекулу цитохромоксидазы. [c.124]

    С понижением температуры доля структурированных липидов в мембранах увеличивается, область кластеров расширяется, а мембранные белки перемещаются ближе к поверхности мембраны. Подобный эффект выдавливания белков из мембраны при охлаждении может быть обнаружен с помощью флуоресцентных зондов. Следовательно, образование кластеров в мембранах при снижении температуры существенно влияет на липид-белковые взаимодействия и модифицирует активность ферментов. Изложение материалов о значении фазово-структурных превращений липидов мембран в Холодовых повреждениях [c.21]

    Липид-белковые взаимодействия приводят к разделению фаз и асимметрии мембраны [c.79]

    Методы ЯМР и ЭПР, которые использовались для установления локализации субстратов в мицеллярных системах, использовали также в исследованиях механизма солюбилизации в липидных мицеллах и липид-белковых взаимодействий [76, 117—126]. [c.238]

    Липид-липидные и липид-белковые взаимодействия. Согласно модели, биполярные группировки фосфолипидов взаимодействуют друг с другом с образованием энергетических зон, т. е. липид-липидные взаимодействия носят, в основном, полярный [c.164]


    АМ, Липид-белковые взаимодействия [c.76]

    Процесс сборки протекает в несколько этапов в соответствии с принципом взаимного узнавания составных частей и липид-липидных, белок-белковых, липид-белковых взаимодействий. Прочность мембранам придают гидрофобные связи между компонентами. Кроме того, в формировании плазмалеммы участвуют готовые мембранные блоки везикул Гольджи, встраивающиеся в нее в процессе секреции компонентов клеточной стенки. [c.320]

    Не менее впечатляющие результаты получены при изучении липид-белковых взаимодействий. Для регуляции обмена веществ особенно важны те из них, что развертываются в составе белково-липидных мембран клетки. Именно они предопределяют уровень активности мембранно-связанных ферментов, [c.480]

    В рассмотренных до сих пор примерах липид-белкового взаимодействия активность ферментов увеличивалась при увеличении текучести окружающего их бислоя. Однако было показапо [38], что активность фосфолипазы Аа, катализирующей гидролиз фосфолипидов, оптимальна во время фазового перехода фосфолипида. Этот результат можно понять, если принять во внимание особые свойства липидов на границе раздела упорядоченных и жидких доменов, существующих во время фазового перехода [39]. Эти данные позволяют предположить, что активность белков в мембранах зависит от наличия как пограничного слоя липидов, ассоциированных с белком, так и границы раздела фаз между различными липидными доменами. [c.125]

    Р1нтересный класс липопротеинов — белки липидного обмена— был открыт в лаборатории ван Деенена. Эти липопротеи-ны способны удалять липид из мембран или включать его в них. В печени, например, были найдены белки обмена, которые преимущественно переносят фосфатидилхолин между липосомами и клеточными мембранами. В мозге найдены два белка, специфичных к фосфатидилинозиту [22]. И хотя не наблюдалось полного транспорта какого-то вида липидов, совершенно-очевидно, что эти белки не имеют отношения к формированию мембран они играют, по-видимому, важную роль лишь в поддержании правильного липидного состава. В гомогенном состоянии получены многие белки этого класса с М 12000- 30 000 [22, 23]. Однако мы отклонились от обсуждения липид-белковых взаимодействий интегральных мембранных белков вернемся же к этому вопросу. [c.81]

    Помимо исследования специфического взаимодействия белковых и липидных компонент мембраны, проявляющегося в процессах рецепции, метод спинового зонда используется и для изучения достаточно общих закономерностей липид-белковых взаимодействий. Так, в целом ряде работ (см., например, [ИЗ, 187]) показано, что присутствие белков в липиде приводит к снижению интенсивности вращения гидрофобных зондов, т. е. к повышению жесткости липидных слоев. Именно благодаря влиянию белков на состояние липидных областей мембран жирорастворимые зонды позволяют следить за состоянием белковых компонент мембраны. Так, в работе [1881 при исследовании температурной зависимости подвижности зонда СП (5, 10) в мембранах саркоплазматического ретикулума и в работах [189] при исследовании температурной зависимости подвижности зонда АХП(14) в мембранах бактерий Mi ro o us lysodeikti us, наряду с обычными структурными переходами в липидных областях мембраны, обусловленных самими липидами, обнаружены структурные переходы в липидных областях мембраны, которые исчезали при тепловой денатурации мембранных белков, что свидетельствует об индукции этих переходов конформационными превращениями мембранных белков. [c.181]

    Липид-белковое взаимодействие в мембранах проявляется при образовании внутри мембран специфичного липидного окружения вокруг белковых молекул. Такие липиды называются связанными или аннулярными (от англ. annular — кольцеобразный). В настоящее время, однако, окончательно не решен вопрос о возможности формирования вокруг белков в жидкокристаллических мембранах (при Г > Гфп) специфического липидного окружения, характеризующегося сравнительно медленным обменом с остальными липидами. Тем не менее с помощью метода ЭНР доказано изменение подвижности и характера упаковки углеводородных цепей под влиянием белков. Более того, методами ЭНР, ЯМР, флуоресценции и другими показано, что пертурбирующее действие различных интегральных и периферических белков (цитохром-с-оксидаза, цитохром с, полилизин, миелин, родопсин, белки тилакоидных мембран и др.) распространяется вплоть до четвертого слоя липидов, окружающих молекулу белка. [c.59]

Рис. 10, Возможный вариант липид-белковых взаимодействий в модели биомембран (гипотетичес и Рис. 10, <a href="/info/27323">Возможный вариант</a> липид-белковых взаимодействий в модели биомембран (гипотетичес и
    Информационные зоны . Остатки жирных кислот (Кь Кг— К/, Кв), часть из которых связана непосредственно с асимметрическим атомом углерода (отмечен на схеме звездочкой), ориентированы в сторону белков. Эти остатки образуют в фосфолипидах простые эфирные, винильноэфирные, сложноэфирные, пептидные связи. Кроме того, в этой же области располагаются С—ОН-группы сфингозина и 2-оксикислот. Исходя из принятой ориентации, наша модель предполагает узнавание определенных связей в липиде различными полярными группами белка. Информация, заложенная в третичной структуре белка, будет определять тип связываемого липида, поэтому образующаяся в этой области зона ССИВС названа нами информационной [7]. На рис. 10, а, иллюстрирующего один из возможных вариантов липид-белкового взаимодействия, видно, что расстояние между соседними молекулами фосфолипидов допускает присоединение комплементарного фосфолипида с образованием непрерывных энергетических зон (рис. 10,6). Это свидетельствует в пользу допустимости подобных взаимодействий в реальной структуре биомембран. Однако мы не исключаем также возможности образования комплекса фосфолипида непосредственно с полипептидной цепью, свернутой в виде -спирали н ориентированной перпендикулярно плоскости мембраны, как предполагает Кеннеди [36]. Размер такой р-спирали может быть согласован с положением двойных связей в жирных кислотах фосфолипидов. Таким образом, данная модель предполагает комплементарность компонентов мембран, стабилизируемую как образованием зон ССИВС, так и ван-дер-ваальсовыми взаимодействиями неполярных частей белков и липидов. [c.156]


    Основную роль в липид-белковых взаимодействиях играют, согласно модели, цепи жирных кислот, которые должны иметь стерические соответствия с белком. С этой точки зрения становятся понятными факты иммобилизации липидов в составе мембранных белков и стехиометрии липид-белок [3]. Существенно, однако, что модель предсказывает также комплементарность полярных групп липидов и белков информационных зон ССИВС. [c.165]

    Эти три первичных модифицирующих эффекта активных форм кислорода и липидных радикалов обусловливают многообразные проявления перекисного окисления как на уровне молекулярной и ультраструктурной организации биомембран, так и в отношении их функциональных характеристик. Наиболее типичными из них являются ограничение молекулярной подвижности фосфолипидов и появление перекисных кластеров в липидном бислое, уменьшение количества жидких липидов в микроокружении мембранных белков и нарушение липид-белковых взаимодействий, устранение характерной для нативных мембран трансбислойной асимметрии липидов, уменьшение толщины гидрофобной зоны мембран и усиление трансмембранной миграции интегральных белков, появление каналов проницаемости для ионов, снижение каталитической активности и термостабильности мембранных белков, снижение электрической прочности мембран (уменьшение потенциала пробоя), их дезинтеграция и фрагментация. Эти проявления патологии мембран, вызываемые липопереокислением, разберем подробнее на примере саркоплазматического ретикулума миоцитов. [c.193]

    Клеточный уровень регуляции. К регуляторным процессам на уровне клетки относятся ядерно-цитоплазменные отношения посттранскрипционная и посттрансляционная модификация макромолекул транспорт веществ через мембраны субклеточных частиц и мембраны эндоплазматической сети макромоле-кулярные (белок-белковые, белково-нуклеиновые, углеводно-белковые и липид-белковые) взаимодействия и др. Все они носят фундаментальный характер в регуляции обмена веществ. [c.477]


Смотреть страницы где упоминается термин Липид-белковые взаимодействия: [c.85]    [c.566]    [c.161]    [c.59]    [c.149]    [c.80]   
Биофизика Т.2 (1998) -- [ c.57 , c.59 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте