Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галофильные бактерии насос

    Работа протонного насоса в галофильных бактериях сопряжена с фосфорилированием АДФ и с работой натриевого насоса, -обеспечивающей опреснение внутренней среды бактериальной V клетки. По-видимому, теория [c.478]

    Протонный насос в отличие от других АТРаз синтезирует АТР благодаря наличию градиента протонов. Данная система выделена из митохондриальной мембраны, частично охарактеризована биохимическими методами и путем анализа реконструированных систем. Методом электронной микроскопии высокого разрешения определена трехмерная структура светозависимого протонного насоса галофильных бактерий. Все эти данные подтверждают ряд выдвинутых ранее гипотез о том, что такие транспортные системы состоят из а-спиральных полипептидных цепей, пронизывающих мембрану. [c.185]


    Наверное, всем понятно, что конечная цель нейрохимических исследований состоит в познании мозга человека, и, естественно, в установлении различий между здоровым мозгом и мозгом при разного рода заболеваниях. По вполне понятным причинам возможности эксперимента на мозге крайне ограничены и поэтому при исследованиях разнообразных аспектов нейрональной активности следует использовать модели. В предыдущих главах уже приводились примеры модельных систем некоторые, самые важные, мы вновь рассмотрим в этой главе. Из рассмотрения исключены теоретические модели — кинетические и математические — для интерпретации функций мозга. В гл. 3 и 7 можно прочесть о биофизических экспериментальных моделях, таких, как искусственная липидная мембрана или светозависимый протонный насос галофильных бактерий. Здесь же представлены некоторые биологические системы, моделирующие определенные свойства, часто в преувеличенном виде, но в соответствии с их прототипами, в других отношениях модели могут значительно отличаться от прототипа. Таким образом, как правило, экспериментальные модели дают информацию только об одной из функций прототипа и щ полученным результатам следует относиться с большой осторожностью. Объединенные данные изучения нескольких моделей естественно лучше отражают картину (хотя опять же это всего только модель) реально существующего явления. История нейробиологии, как и науки вообще, является историей предложенных, отвергнутых и уточненных моделей. [c.352]

Рис. 23-30. У галофильных бактерий молекулы бактериородопсина, определенным образом ориентированные в клеточной мембране, служат насосом, который под действием света выкачивает ионы наружу. Возникающий в результате этого градиент ионов Н является источником энергии для синтеза АТР, катализируемого АТР-синтетазой. Рис. 23-30. У <a href="/info/566423">галофильных бактерий</a> молекулы бактериородопсина, <a href="/info/711812">определенным образом</a> ориентированные в <a href="/info/1532051">клеточной мембране</a>, служат насосом, который под <a href="/info/104025">действием света</a> выкачивает ионы наружу. Возникающий в результате этого <a href="/info/215343">градиент ионов</a> Н является <a href="/info/98823">источником энергии</a> для синтеза АТР, катализируемого АТР-синтетазой.
    Основная проблема создания систем конверсии энергии биомассы в водород связана с превращением этих метаболитов в топливную форму. Для биотехнологии можно было бы воспользоваться и другими механизмами превращения энергии, вьывленными у микроорганизмов. Например, галофильная бактерия На1оЬас1епит каЬЫит способна использовать световую энергию, улавливаемую пурпурным пигментом (бактериородопсином), вмонтированным в мембрану клетки. Молекула пигмента состоит из одной поли-пептидной цепи, к которой прикреплена молекула ретиналя, являющегося светочувствительной частью пигмента. Под влиянием солнечного света изменяется конформация пигмента, приводящая к переносу ионов водорода (Н ) через мембрану. Пигмент является как бы протонным насосом. Молекулы бактериородопси-на располагаются в мембране триадами, и перекачивание протонов через мембрану обеспечивает градиент концентрации Н (АН ), вследствие чего они движутся к наружной стенке, у которой пространство подкисляется и возникает электрохимический градиент (Ац н)- [c.27]


    На первый взгляд энергозависимый синтез АТР, по-видимому, нельзя рассматривать как нейрохимическую проблему, но между передачей сигнала и энергетическим сопряжением существует некоторое сходство. Оба этих процесса имеют много общего и осуществляются с помощью белков, встроенных в липидные мембраны. Их взаимосвязь четко прослеживается при обсуждении фотозависимого протонного насоса у галофильных бактерий (с. 181). Бактериальный рецептор, аналогичный рецепторам нейрона (гл. 8 и 9), воспринимает сигнал из окружающей среды и передает его внутрь через плазматическую ме.мбрану. Следовательно, энергия света внешнего сигнала обеспечивает внутриклеточный синтез АТР. Изучение бактериородопсина и механизма сопряжения фоторецепции, а также энергозависимого транспорта протонов (и наконец, синтеза АТР) представляет особый интерес при исследовании нейрорецептора. [c.171]

    Наиболее четкое представление об ионном насосе было получено в ходе изучения пурпурной мембраны галофильных бактерий. Данный светозависимый протонный насос представляет собой часть мембранного комплекса, включающего рецепторы (в данном случае фоторецепторы), посредством которых внеклеточный сигнал (свет, источник энергии) превращается в внутриклеточ- [c.182]

    Оказалось, что в галофильных микроорганизмах бактериородоп-сии выполняет роль светозависимого протонного насоса, создающего градиент ионов водорода энергия этого градиента используется клеткой для синтеза АТР (рис. 328). Другими словами, фотосинте-тическая машина галофильных бактерий представлена достаточно простой белковой системой, которая выполняет уникальную функцию бесхлорофильного фотосинтеза.  [c.606]

    При электронно-микроскопическом исследовании разрешение может быть ограничено многими причинами, главными из которых являются степень упорядоченности кристаллов и способ их подготовки к микроскопированию. Обычно такие кристаллы легко разрушаются электронным пучком и их приходится заключать в тонкие пленки контрастирующего вещества. Подобная процедура увеличивает радиационную стабильность кристаллов, повышает контрастность изображений, но значительно ухудшает разрешение. Предельное разрешение в этих случаях определяется зернистостью контрастирующего вещества (или размером его кристаллов) и не превышает 15-20 А. В ряду объектов, исследованных методами трехмерной электронной микроскопии, следует выделить бактериородопсин. В галофильных бактериях этот белок, функционируюшдй как светозависимый "протонный насос", организован в так называемые пурпурные мембраны - участки клеточной мембраны, содержащие бактериородопсин в кристаллической упаковке. Другими словами, бактериородопсин функционирует в клетке в форме двухмерных кристаллов, которые могут быть выделены в высокочистом состоянии. [c.201]

    Более прямая форма фотофосфорилирования имеет место в крайних галофильных бактериях НаЬЬа егшт ка1оЬшт — облигатном аэробе, который может существовать при низкой концентрации кислорода (а иногда и совсем без кислорода) при условии, что на них действует свет. При этом галобактерии синтезируют бляшки, содержащие пурпурный пигмент, распределяемый по клеточным мембранам. Пигмент заменяет элек-трон-транспортную систему, действуя как протонный насос, приводимый светом в рабочее состояние. [c.311]

    В гл. 5 уже упоминались пурпурные мембраны галофильных бактерий Я. ка1оЫит, которые позволяют этим бактериям выживать в анаэробных условиях. Пурпурный пигмент представляет собой один белок, бактериородопсин, в какой-то мере родственный зрительному пигменту, обнаруженному в дисках палочки сетчатки глаза млекопитающих. Этот белок имеет широкий максимум поглощения при 570 нм [5,26]. Поглощение света приводит к превращению формы, поглощающей при 570 нм, через ряд короткоживущих промежуточных форм в продукт, который поглощает максимально при 412 нм и возвращается путем обычной термической реакции к исходной форме с максимумом при 570 нм в течение нескольких миллисекунд. Все это явно сопровождается изменением конформации молекулы, причем частота конформационных переходов составляет около 100 Гц. При этом происходит выброс протонов во внешнюю среду и их захват из внутреннего пространства. Таким образом, в интактных клетках бактериородопсин действует как фотоиндуцированный протонный насос. В результате его работы бактерия может поддерживать необходимые ионные градиенты и фосфорилировать АДФ [11,38]. В силу относительной простоты системы есть все основания полагать, что этот протонный насос может оказаться первым примером механизма активного транспорта, который удастся расшифровать на молекулярном уровне. [c.337]

    Рпс. 7.12, Электронная микрофотография высокого разрешения бактериородопсина — светозависимого протонного насоса галофильны.х бактерий. Во многих отношениях эта структура подходит для использования в качестве модели ионного транспорта через другие (нейрональные) мембраны. Каждая молекула состоит из семи спиральных полипептидных цепей, пронизывающих мембрану (б). На карте электронной плотности (а) видно, что три молекулы ассоциированы в единое структурное образование, в котором внутреннее кольцо включает девять и внешнее — двенадцать полипептидных спиралей. В центре расположены липиды. Каждая молекула бактериородопсина является активным протонным насосом. (Воспроизводится с разрешения R. Henderson и M Millan Journals Ltd.) [15]. [c.183]



Смотреть страницы где упоминается термин Галофильные бактерии насос: [c.68]    [c.79]    [c.184]    [c.713]    [c.309]    [c.102]    [c.44]   
Биоэнергетика и линейная термодинамика необратимых процессов (1986) -- [ c.337 , c.343 ]




ПОИСК





Смотрите так же термины и статьи:

Галофильные бактерии



© 2025 chem21.info Реклама на сайте