Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Внутренняя мембрана митохондрий

Рис. 21-24. Завершающая стадия метаболическою окисления-дыхательная цепь. Все ко.мпоненты цепи собраны па внутренней поверхности внутренней мембраны митохондрии в четыре макромолекулярных комплекса, содержащих цитохромы, флавопротеиды и другие негемиповые железосодержащие белки. Кофермент р, или убихинон, и цитохром с играют роль переносчиков протонов и электронов от одного комплекса к следующему. Восстановление осуществляется путем переноса протонов до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется путем переноса электронов, а протоны переходят в раствор. Электроны и протоны снова объединяются в конце цепи, когда кислород восстанавливается до воды. Свободная энергия запасается в молекулах АТФ, образующихся в трех из четырех комплексов. Рис. 21-24. Завершающая стадия метаболическою <a href="/info/526112">окисления-дыхательная цепь</a>. Все ко.<a href="/info/933341">мпоненты</a> цепи собраны па <a href="/info/93820">внутренней поверхности внутренней</a> <a href="/info/101342">мембраны митохондрии</a> в четыре <a href="/info/1350480">макромолекулярных комплекса</a>, содержащих цитохромы, флавопротеиды и другие негемиповые <a href="/info/168868">железосодержащие белки</a>. Кофермент р, или убихинон, и цитохром с <a href="/info/1907646">играют роль</a> <a href="/info/386253">переносчиков протонов</a> и электронов от одного комплекса к следующему. Восстановление осуществляется <a href="/info/1898102">путем переноса протонов</a> до тех пор, пока этот процесс не достигнет кофермента Q, после чего оно осуществляется <a href="/info/1896993">путем переноса электронов</a>, а <a href="/info/713953">протоны переходят</a> в раствор. Электроны и протоны снова объединяются в <a href="/info/626669">конце цепи</a>, когда кислород восстанавливается до воды. <a href="/info/2431">Свободная энергия</a> запасается в молекулах АТФ, образующихся в трех из четырех комплексов.

    У человека, так же как и у многих животных, особенно тех, которые впадают в спячку, имеется специализированный тип жировой ткани, называемый бурым жиром (рис. 24-17). Наличие такой ткани особенно характерно для новорожденных, у которых она раполагается на шее, в верхней части груди и спины. Цвет бурого жира обусловлен присутствием большого числа митохондрий, богатых цитохромами (разд. 17.17). Бурый жир специализирован для выработки тепла, а не АТР при окислении жирных кислот. Внутренние мембраны митохондрий в бурой жировой ткани содержат специфические поры, через которые осуществляется перенос ионов Н" , причем их способность переносить ионы Н регулируется. Через эти поры ионы Н , выкачиваемые из митохондрий во время транспорта электронов (разд. 17.15,е), могут возвращаться в дышащие митохондрии в итоге наблюдается холостая циркуляция ионов Н и вместо образования АТР происходит выделение энергии в виде тепла (разд. 17.17). Если организм не нуждается в тепле, то Н" - [c.762]

    Хемиосмотическая теория сопряжения окисления и фосфорилирования. Эта гипотеза предложена в 1961 г П. Митчеллом причем значительный вклад в ее доказательство был сделан В. П. Скулачевым с соавторами. Согласно этой теории, фактором, сопрягающим окисление с фосфорилированием, является электрохимический, протонный потенциал АцН , возникающий на внутренней мембране митохондрий в процессе транспорта электронов. При этом предполагается, что мембрана непроницаема для ионов, особенно протонов, их транслокация с внутренней стороны мембраны (из матрикса) на наружную сторону внутренней мембраны митохондрий осуществляется за счет процесса окисления в дыхательной цепи, т. е. транспорта высокоэнергетических электронов. Возникающий электрохимический потенциал АцН+ является аддитивным он складывается из химического потенциала АрН и электрического со знаком (+) на наружной стороне мембраны (Avj/)  [c.203]

Рис. 17-2. Биохимическая анатомия митохондрий. Указана локализация ферментов цикла лимонной кислоты, цепей переноса электронов, ферментов, катализирующих окислительное фосфорилирование, и внутреннего пула коферментов. Во внутренней мембране одной митохондрии печени может находиться свыше 10000 наборов цепей переноса электронов и АТР-синтетазных молекул. Число таких наборов тем больше, чем больще площадь поверхности внутренней мембраны. Митохондрии сердца с их многочисленными кристами содержат в 3 раза больше таких наборов, чем митохондрии печени. Внутренний пул коферментов и промежуточных продуктов функщю-нально изолирован от соответствующего пула цитоплазмы. Подробно структура митохондрий описана в гл. 2. Рис. 17-2. <a href="/info/566923">Биохимическая анатомия</a> митохондрий. Указана локализация <a href="/info/1351135">ферментов цикла лимонной кислоты</a>, <a href="/info/511072">цепей переноса электронов</a>, ферментов, <a href="/info/208972">катализирующих окислительное</a> фосфорилирование, и внутреннего пула коферментов. Во внутренней мембране одной <a href="/info/1412262">митохондрии печени</a> может находиться свыше 10000 наборов <a href="/info/511072">цепей переноса электронов</a> и АТР-синтетазных молекул. <a href="/info/1476375">Число таких</a> наборов тем больше, чем <a href="/info/199843">больще</a> <a href="/info/895621">площадь поверхности внутренней</a> мембраны. Митохондрии сердца с их многочисленными кристами содержат в 3 раза больше таких наборов, чем <a href="/info/1412262">митохондрии печени</a>. Внутренний пул коферментов и <a href="/info/6222">промежуточных продуктов</a> функщю-нально изолирован от соответствующего пула цитоплазмы. Подробно <a href="/info/101357">структура митохондрий</a> описана в гл. 2.

    Наружная и внутренняя мембраны митохондрий имеют неодинаковую проницаемость для различных веществ. Наружная мембрана легко проницаема для катионов, анионов и небольших незаряженных молекул, Но препятствует проникновению крупных белковых молекул, на- [c.444]

    Солюбилизация внешней и внутренней мембраны митохондрий различными ионными и неионными детергентами. [c.413]

    Как уже отмечалось, с внутренней мембраной митохондрий связаны ферменты дыхательной цепи. Кроме того, она обладает АТФ-азной активностью, связанной с механизмом окислительного фосфорилирования. Маркерным ферментом для идентификации внутренней мембраны митохондрий служит цитохромоксидаза. [c.198]

    Химизм реакции обходного пути фосфорилирования пирувата приведен в табл. 20.1. Первая необратимая реакция глюконеогенеза катализируется мита-хондриальной пируваткарбоксилазой, которая содержит в качестве кофермента витамин Н (биотин). В митохондриях этот фермент катализирует АТФ-зави-симую реакцию карбоксилирования пирувата, в ходе которой образуется оксалоацетат. Для оксалоацетата внутренняя мембрана митохондрий непроницаема, и транспорт его в цитоплазму происходит с помощью малатного челночного механизма. Митохондриальная малатдегидрогеназа восстанавливает оксалоацетат до малата, который может выходить в цитоплазму. Затем уже цитоплазматическая малатдегидрогеназа окисляет малат до оксалоацетата для последующего участия в реакции, катализируемой фосфоеноилпируваткарбоксики- [c.273]

    Окислительно-восстановительные потенциалы каждого переносчика увеличиваются по мере приближения к кислороду, так что электроны, отщепленные от субстратов соответствующими дегидрогеназами, переносятся к кислороду термодинамически самопроизвольно. Внутренняя мембрана митохондрий содержит полную дыхательную цепь с двумя дегидрогеназами (сукцината и НАДН). Известно несколько специфических ингибиторов переноса электронов. [c.435]

    Изучение проницаемости внутренней мембраны митохондрий для анионов. [c.503]

    Так как внутренняя мембрана митохондрий непроницаема для растворенных в матриксе веществ, гипотоническая обработка привод дит к набуханию матрикса, что сопровождается разрывом внешней мембраны. При этом свободный цитохром с выходит в окружающую среду, а адсорбированный может быть легко удален экстракцией солевым раствором. [c.419]

    Сопряженное с синтезом АТФ окисление НАДН в дыхательной цепи митохондрий представляет собой один из путей утилизации восстановительных эквивалентов клетки. Внутренняя мембрана митохондрий непроницаема для пиридиннуклеотидов и добавленный НАДН может быть окислен в дыхательной цепи только после разрушения внутренней мембраны. Однако в клетке существуют специальные челночные механизмы , которые обеспечивают окисление цитоплазматического НАДН дыхательной цепью и не требуют его переноса через внутреннюю мембрану митохондрий. [c.437]

    Энергопреобразующая. Важнейшей функцией многих биомембран служит превращение одной формы энергии в другую. К энергопреобразующим мембранам относятся внутренняя мембрана митохондрий, цитоплазматическая мембрана бактерий, мембраны бактериальных хроматофоров, тилакоидов хлоропластов, цианобактерий и ряд других. [c.302]

Рис. 17-15. Разрушение внутренней мембраны митохондрий ультразвуком, получение мембранных пузырьков, лишенных способности к окислительному фосфорилированию, и реконструирование структур, способных осуществлять этот процесс. Под действием ультразвука кристы внутренней митохондриальной мембраны разрушаются. Затем края мембранных фрагментов смыкаются и образуются замкнутые мембранные пузырьки, в которых головки грибовидных выростов, или р1-головки, обращены не внутрь, а наружу. Если обработать эти инвертированные пузырьки мочевиной или трипсином, то Г1-головки от них отделятся. Обработанные таким способом пузырьки, все еще содержащие Р<,-компоненты, сохраняют способность к переносу электронов, но уже не могут осуществлять фосфорилирование. Если теперь к таким потерявшим свои головки пузырькам добавить молекулы р1, то эти молекулы вновь соединятся с р -единица-ми, сохранившимися в мембране пузырьков. Рис. 17-15. Разрушение внутренней мембраны митохондрий ультразвуком, получение мембранных пузырьков, лишенных способности к <a href="/info/38828">окислительному фосфорилированию</a>, и <a href="/info/1435077">реконструирование</a> структур, способных осуществлять этот процесс. Под <a href="/info/547797">действием ультразвука</a> кристы <a href="/info/1900631">внутренней митохондриальной мембраны</a> разрушаются. Затем края мембранных фрагментов смыкаются и <a href="/info/1511369">образуются замкнутые</a> мембранные пузырьки, в которых головки грибовидных выростов, или р1-головки, обращены не внутрь, а наружу. Если обработать эти инвертированные пузырьки мочевиной или трипсином, то Г1-головки от них отделятся. Обработанные таким способом пузырьки, все еще содержащие Р<,-компоненты, сохраняют способность к <a href="/info/482">переносу электронов</a>, но уже не могут осуществлять фосфорилирование. Если теперь к таким потерявшим свои головки пузырькам добавить молекулы р1, то эти молекулы вновь соединятся с р -единица-ми, сохранившимися в мембране пузырьков.
    Характерной особенностью клеток эукариот является присутствие митохондрий — сложных образований с двойной мембраной, близких по величине к бактериям (рис. 1-3 и 1-4). Внутренняя мембрана митохондрий образует многочисленные глубокие складки, так называемые кристы (гребневидные выросты). Наружная мембрана проницаема для соединений с небольшим молекулярным весом, но проникновение веществ во внутреннее пространство митохондрий (в матрикс) и выход из него находятся под строгим контролем внутренней мембраны. Хотя отдельные окислительные реакции протекают в ЭР, все же основные процессы, связанные с образованием и накоплением энергии, у аэробных организмов локализованы в митохондриях именно в этих органеллах происходит утилизация основной части кислорода. В свое время многие биохимики были крайне удивлены, обнаружив в митохондриях кольцевую ДНК с небольшим молекулярным весом. Далее оказалось, что ми- [c.33]


    Считая, что внутренняя мембрана митохондрий проницаема для пирувата (а также для цитрата и малата), предложите чел- [c.651]

    Следует обратить внимание, что восстановленные в цитоплазме в процессе реакции гликолитической редукции [гликолиз, реакция (6), гл. 18] две молекулы НАДН могут при окислении в митохондриях давать не шесть молекул АТФ, а только четыре. Это объясняется тем, что для НАДН внутренняя мембрана митохондрий непроницаема и они могут включаться в дыхательную цепь [c.269]

    Внутренняя мембрана митохондрий 75 25 [c.302]

    Относительно мало липидов в мембранах, активно участвующих в метаболических процессах. К таким высокоактивным мембранам можно отнести внутренние мембраны митохондрий, мембраны эндо-плазматического ретикулума у эукариот, бактериальные мембраны. [c.38]

    Вопрос также заключается в том, что не ясно, где происходит окисление НАД Н (источник энергии) ферменты 3 и 4, которые связаны с восстановлением НАД, локализованы в цитоплазме у дрожжей, а внутренняя мембрана митохондрий, в которых осуществляется синтез АТФ, как известно, для НАД Н не проницаема  [c.170]

    Внутренняя мембрана митохондрий [c.301]

    Внутренняя мембрана митохондрий содержит специфические транспортные системы [c.536]

    Повторяющиеся единицы а — различные формы повторяющихся единиц 6 — образование мембраны из повторяющихся единиц в —развитие замкнутой мембранной структуры (часть внутренней мембраны митохондрии). [c.160]

    Хотя интактные митохондрии представляют собой удобный объект для изучения механизмов биоэнергетики, для решения ряда задач ис пользуют более простые системы — субмитохондриальные фрагменты К числу таких задач относится изучение переноса электронов в дыха тельной цепи, локализованной во внутренней мембране митохондрий Существование системы мембран, барьеров проницаемости, системы пе реноса энергии и др. очень осложняет однозначную интерпретацию кинетики окислительно-восстановительных реакций в интактных митохондриях. В связи с этим были разработаны методы получения более простых препаратов субмитохондриальных частиц. Последние могут быть получены при действии на митохондрии либо детергентов, либо сильных механических воздействий (ультразвук, растирание с песком и т. д.). К числу различных субмитохондриальных фрагментов относится так называемый препарат Кейлина—Хартри, представляющий собой фрагменты внутренней мембраны митохондрий, почти лишенные ферментов цикла Кребса. Препарат имеет полный набор дыхательных переносчиков, обладает высокими активностями НАД-Н и сукцинатокси-дазы, стабилен при хранении. [c.407]

    Важнейшая роль переноса электронов-это, конечно, обеспечение энергией синтеза АТР в процессе окислительного фосфорилирования. Однако энергия переноса электронов может использоваться и для других биологических целей (рис. 17-20), например для выработки тепла. У новорожденных детей, у детенышей тех млекопитающих, которые рождаются голыми, и у некоторых вотных, впадающих в зимнюю спячку, имеется в области шеи и в верхней части спины особая жировая ткань, называемая бурым жиром. Ее назначение состоит в том, чтобы вырабатывать тепло в процессе окисления жиров. Эта жировая ткань действительно окрашена в бурый цвет, потому что в ней имеется очень много митохондрий, в которых содержится большое количество красноватобурых пигментов-цитохромов. Специализированные митохондрии бурого жира (рис. 17-21) обычно не синтезируют АТР. Свободная энергия переноса электронов рассеивается ими в виде тепла, благодаря чему и поддерживается на должном уровне температура тела молодых животных. Внутренние мембраны митохондрий бурого жира имеют специальные поры для ионов Н . Ионы Н , выведенные из митохондрий в результате переноса электронов, возвращаются в митохондрии через эти поры, минуя Р р1-АТРазу. Вследствие этого свободная энергия переноса электронов используется не для синтеза АТР, а для выработки тепла. [c.534]

    В системе доказательств обязательного участия коэнзима в дыхательной цепи важную роль играют эксперименты по экстракции его из внутренней мембраны митохондрий различными органическими растворителями (циклогексаном, пентаном, ацетоном и др.). Такая обработка приводит к полному ингибированию переноса электронов от дегидрогеназ к молекулярному кислороду, но не сказывается на каталитической активности собственно дегидрогеназ, цитохромов и цитохромоксидазы. Реконструкция коэнзима Q в состав препарата СМЧ, специфически лишенных убихинона, приводит к полному восстановлению утраченных функций. [c.421]

    Внутренняя мембрана митохондрий обладает специфической проницаемостью для различных катионов и анионов. Это свойство делает митохондрии удобной моделью для изучения переноса веществ через биологические мембраны. Изолированные митохондрии содержат значительные количества катионов и анионов, причем количественно преобладает катион калия. При инкубации митохондрий в бескалиевой среде с помощью специального электрода удобно изучать основные закономерности переноса заряженной частицы через мембрану. [c.442]

    Рассмотрим процессы, происходящие при уравнивании концентрации ионов К+ во вне- и внутримитохондриальном пространстве (рис. 53). Внутренняя мембрана митохондрий плохо проницаема для К" . Поэтому если митохондрии с высоким содержанием калия в матриксе поместить в бескалиевую среду, то калий в окружающей среде практически не появляется. Специфическую проницаемость мембраны для К можно индуцировать антибиотиком валиномицином, представляющим собой циклический депсипептид с выраженными гидрофобными свойствами и способным к комплексообразованию с К+. Добавление к ми- [c.442]

    Внутренняя мембрана митохондрий проницаема для аммиака, кислорода, углекислого газа, воды, пирувата, ацетата и других монокар-боновых кислот. По-видимому, перенос этих веществ происходит в результате простой диффузии незаряженных молекул. Перенос во внутреннее пространство митохондрий молекул недиссоциированной уксусной кислоты должен, как и в случае фосфата, привести к изменениям pH по обе стороны мембраны в соответствии с законом действующих масс. [c.447]

    Изучение проницаемости внутренней мембраны митохондрий для ионов Са + привело к представлению о существовании в митохондриях специфической транспортной системы. Ее активность ингибируется низкими концентрациями рутениевого красного, катионов семейства лантапидов и гексаминокобальта. Транспорт Са + специфически ингибируется антителами на митохондриальный гликопротеин, который может быть легко экстрагирован из митохондрий с помощью осмотического щока в присутствии ЭДТА. Иммунологические данные не оставляют сомнений в участии этого гликопротеина (м. м. 33 000 Да) в связывании и (или) переносе Са + через мембрану. Система транспорта Са + в митохондриях катализирует также зависимое от энергии поглощение других двухвалентных катионов, но ее специфичность па- [c.453]

    Транспорт ацильной группы в митохондрии. Внутренняя мембрана митохондрий непроницаема для ацил-КоА, образовавшегося в цитоплазме. Переносчиком активированной жирной кислоты является карнитин (у-триме- [c.329]

    Внутренняя мембрана митохондрий непроницаема не только для ионов Н , ОН и К , но и для многих других ионизованных растворенных веществ. Каким же образом в таком случае попадают в митохондриальный матрикс такие заряженные частицы, как АВР " и фосфат , образующиеся в цитозоле при расщеплении АТР, и как новосинтезиро-ванный АТР (а окислительное фосфорилирование протекает внутри митохондрий) выходит из матрикса наружу  [c.536]

    Образование NADPH, необходимого для биосинтеза жирных кислот. Поскольку внутренняя мембрана митохондрий непроницаема для ацетил-СоА, ацетильные группы попадают в цитозоль посредством челночного переноса (см. схему на рис. 21-3). В цитозоле содержится NADP-зависимая малатдегидрогеназа, катализирующая реакцию [c.651]

    С экспериментальцыми данными согласуются следующие представления. Плазматическая мембрана бактерий и внутренняя мембрана митохондрий непроницаемы для ионов, в том числе Н" и ОН электрическая проводимость мембран низка. Мембра- [c.244]


Библиография для Внутренняя мембрана митохондрий : [c.455]   
Смотреть страницы где упоминается термин Внутренняя мембрана митохондрий : [c.412]    [c.270]    [c.13]    [c.581]    [c.45]    [c.57]    [c.91]    [c.511]   
Основы биохимии Т 1,2,3 (1985) -- [ c.511 , c.526 , c.528 , c.533 , c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Мембраны внутренние



© 2025 chem21.info Реклама на сайте