Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амидная распределение зарядов

    Большинство ковалентно связанных атомов несет парциальные заряды. Поскольку ковалентные связи между разными типами атомов приводят к асимметричному распределению валентных электронов, большинство атомов молекулы несет парциальные заряды. Парциальные заряды некоторых аминокислотных остатков приведены в табл. 3.3. Поскольку суммарный заряд нейтральной молекулы равен нулю, то она может быть аппроксимирована набором диполей или мультиполей. Эти мультиполи взаимодействуют между собой по закону Кулона, как показано в табл. 3.4. Энергия взаимодействия зависит от диэлектрической проницаемости к окружающей среды. Мы используем здесь величину р = 4, макроскопическую диэлектрическую проницаемость амидного полимера [50]. Диэлектрическую проницаемость для микроскопических объектов рассчитать трудно, и используемые в расчетах значения к могут варьироваться от 1 до 5 [51]. [c.41]


    Сложноэфирные и амидные группы характеризуются специфическим распределением электронного заряда, которое в методе локализованных валентных связей можно описать суперпозицией предельных структур типа [c.396]

    Заряд возрастает с увеличением коэффициента трения, диэлектрической проницаемости и полярности движущихся тел, внешних усилий, сжимающих эти тела, скорости их движения, шероховатости поверхностей и т. п. При движении между поверхностями образуется двойной электрический слой толщиной 5—10 А, причем распределение отрицательных и положительных зарядов между обеими поверхностями зависит от так называемого трибоэлектрического ряда материалов (табл. 3.1). Этот ряд не всегда соответствует данным табл. 3.1, так как следы примесей или мономолекулярные слои влаги, газов, жировых и других веществ на поверхности одного пли обоих тел могут изменить расположение материалов в таблице. Из табл. 3.1 видно, что полимеры, содержащие амидные группы (например, белковые вещества), заряжаются более положительно, чем соединения с гидроксильными группами (например, целлюлоза), а последние — более положительно, чем полиуглеводороды производные полиакрилонитрила всегда заряжаются отрицательно. [c.51]

    Распределение остатков внутри и снаружи молекулы согласуется с данными для других глобулярных белков. Гидрофобные остатки предпочтительнее располагаются внутри молекулы, а заряженные группы — снаружи [52]. Поскольку участок в р-форме находится главным образом внутри глобулы, в нем обнаружено много гидрофобных аминокислот, в том числе лейцина и фенилаланина. Всего в контакте с водой не принимают участия 78 остатков. Из них 22 могут образовывать водородную связь с атомами пептидной связи или близлежащих остатков, и, по-видимому, эта возможность почти во всех случаях реализуется [3, 52]. Два остатка триптофана (63 и 147) и один остаток тирозина (238) спрятаны внутри молекулы КПА. Остальные остатки этих аминокислот находятся в частичном контакте с растворителем. Существование водородной связи между ОН-группой Туг-238 и карбонильной группой Glu-270, вероятно, имеет некоторое значение для конформационного изменения с участием Glu-270 при связывании субстрата, как описано ниже. Четыре из десяти остатков пролина расположены у N-концов спиральных участков, а три —у концов наиболее длинных цепей в слое с р-структурой. Во внутренней части молекулы находятся три карбоксильные группы, принадлежащие остаткам 104, 108 и 292. Конечно, справедливость этого утверждения зависит от того, насколько правильно установлен тот факт, что они являются свободными и не участвуют в образовании амидных связей. Карбоксильная группа Glu-292 образует солевой мостик с Arg-272, так что ее заряд локально нейтрализован. Детальное изучение карт электронной плотности обнаружило неизвестный ранее факт внедрения в молекулу карбоксипептидазы десяти молекул воды [52]. [c.514]


    В ИК-снектрах диметилацетилфосфида (I) и метилдиацетилфосфида (II) наблюдаются две карбонильные полосы и V2. Введение второй ацетильной группы не изменяет положения этих полос (табл. 2). В спектрах соответствующих амидов V и VI введение второй ацетильной группы вызывает резкое повышение частоты (на 50 лt ). Это связано, по-видимому, с повышением кратности связи С—О из-за распределения заряда между двумя атомами кислорода. Это сопоставление свидетельствует против амидного резонанса в фосфидах. [c.64]

    При переходе от бензанилида к ди-, три- и тетрамерам амидов распределение заряда по атомам и связям в амидной группе, начиная с тримера, остается практически неизменным [1]. [c.60]

    На атомах амидной группы распределение зарядов впервые было получено Р. Курландом и Э. Вильсоном для простейшей молекулы формамида с помощью связевых моментов [92]. При определении последних использованы компоненты дипольного момента формамида вдоль его главных осей инерции, известные из измерений эффекта Штарка геометрические параметры, найденные авторами из микроволновых вращательных спектров, и перенесенные из других молекул дипольные моменты связей. Д. Поланд и Г. Шерага использовали для определения зарядов на атомах амидной и сложноэфирной групп квантовомеханический метод [93]. Общий заряд на каждом атоме рассматривался в виде суммы о- и л-зарядов. При этом а-заряды были вычислены методом МО-ЛКАО в варианте Дель Ре, а л-заряды оценены из экспериментальной величины и направления общего дипольного момента молекулы. Е.М. Поповым и [c.118]


Смотреть страницы где упоминается термин Амидная распределение зарядов: [c.118]    [c.359]    [c.254]   
Химия протеолиза Изд.2 (1991) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Заряд распределение



© 2025 chem21.info Реклама на сайте