Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белковые вещества

    Главнейшей и основною частью клетки является протоплазма, относящаяся к группе белковых веществ, обладающих весьма сложным и трудно поддающимся изучению строением. [c.22]

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]


    Целлюлоза — один из самых основных видов полимерных материалов, имеет волокнистое строение и является главной составной частью стенок растительных клеток и вместе с сопровождаю-шими ее вешествами (никрустами) составляет твердый остов всех растений. В состав древесины кроме целлюлозы входит большое количество и других органических веществ гемицеллюлозы, лигнина, смол, жиров, белковых веществ, красителей. На долю минеральных веществ приходится всего 0,3—1,1%. В сухой древесине находится от 40 до 60% так называемой а-целлюлозы, т. е. целлюлозы, нерастворимой в 17,5—18%-ном водном растворе едкого натра при комнатной температуре. Молекулярная масса технической целлюлозы, имеющей регулярное и строго линейное строение, колеблется от 50 000 до 150 000 и выше. Целлюлоза придает растительной ткани механическую прочность и эластичность, образуя как бы скелет растения. [c.201]

    Присутствие в растворе белковых веществ и коллоидов, а также нейтральных солей обычно тоже влияет на интервал перехода индикаторов и хотя для титрования применяют лишь те индикаторы, у которых так называемые белковая и солевая ошибки невелики, все же при высоких концентрациях белковых веществ или солей в растворах эти ошибки могут стать значительными. Чтобы исключить влияние всех указанных выше факторов на окончательный результат анализа, каждый раз, когда приходится вести титрование при нагревании или в присутствии неэлектролитов, большого количества солей и т. д., следует устанавливать титр рабочего раствора в тех же самых условиях. Это правило является вообще одним из основных в титриметрическом анализе. [c.253]

    Значительную стойкость природным нефтяным эмульсиям придает обычно присутствующий в нефти эмульгатор, который адсорбируется на поверхности диспергированных частиц. Эмульгаторами для нефтяных эмульсий являются коллоидные растворы смолы, асфальтены, мыла нафтеновых кислот, а также тонко диспергированные глины, мелкий песок, суспензии металлов и др. Они обладают способностью прилипать к поверхности раздела двух фаз) эмульсии, образуя защитную броню глобулы. Эмульгаторы, которые способствуют образованию эмульсии масла в виде глобул в дисперсионной среде —воде (гидрофильные эмульгаторы), представляют собой коллоидные растворы веществ, активных в воде, т. е. растворяющихся или разбухающих в ней (например, щелочные мыла, белковые вещества, желатин). Вещества, растворимые в маслах (например, смолы, известковые мыла, окисленные нефтепродукты), носят названия гидрофобных, или олеофильных эмульгаторов. В этой эмульсии вода содержится в виде глобул, взвешенных в дисперсионной среде — нефти. [c.11]


    Белковое вещество (протоплазма), изменяясь в силу целого ряда причин, переходит через стадию жиров и жирных кислот [c.22]

    Содержание серы в нефти, по-видимому, есть результат разложения белковых веществ животных остатков, что, однако, требует дополнительного изучения. [c.104]

    Мочевина применяется как азотсодержащая добавка к кормам, в особенности при скармливании кукурузного силоса, бедного белковыми веществами. [c.337]

    Все растительные и животные организмы содержат белковые вещества. Это сложные высокомолекулярные соединения, которые обладают коллоидными свойствами. Независимо от разнообразного строения и различных размеров молекул отдельные белковые вещества имеют очень близкий элементный состав. Некоторые белки содержат фосфор, железо, иод и т. д. [c.25]

    Очевидны биологические предшественники только для нефтяных порфиринов, обсуждаемых в следующей главе книги, и аминокислот источником порфиринов могут быть разнообразные био-хромы (растительные и бактериохлорофиллы, гемоглобины, цито-хромы и др.) [455, 677, 683, а аминокислот — белковые вещества [762]. [c.138]

    Среди различных естественных материалов и продуктов производства нередко встречаются разного рода эмульсии. Жиры в молоке образуют эмульсию, стабилизированную казеином и другими веществами. Млечный сок растений также во многих случаях представляет собой эмульсии, как, например, латекс, в котором частицы каучука, образующего эмульсию, стабилизированы различными белковыми веществами. [c.540]

    Высокомолекулярное соединение — важнейшая составная часть, скрепляющая все компоненты в одно монолитное целое и придающая смеси (композиции) пластичность, способность формоваться, а также электроизоляционные, антикоррозионные и другие важнейшие свойства. Для этого используются кроме синтетических полимеров эфиры целлюлозы, белковые вещества, асфальты и пеки. По составу пластмассы можно разделить на нена-полненные, представляющие собой чистые или с очень незначительными добавками полимеры, и наполненные пластики — смеси, содержащие наполнители, пластификаторы, красители, стабилизаторы, отвердители и другие добавки, равномерно распределенные в связующем — смоле. [c.213]

    Содержание белковых веществ в растениях увеличивается с упрощением их организации. [c.24]

    Белковые вещества входят в состав протоплазмы и часто составляют больше половины ее массы. Общее содержание белков в растениях зависит от их принадлежности к тому или иному виду (см. табл. 4). В деревьях оно меньше и колеблется от 1 до 10%. Значительно больше белковых веществ в простых водорослях (20—30%), а в некоторых бактериях их содержание достигает 80%. Молекулярная масса различных белков колеблется в широких пределах от (17500 до 6800000). Изучение белков затруднено тем, что они представляют собой сложные смеси, выделение которых из растений в неизмененном виде почти невозможно. Основной способ выяснения их строения состоит в изучении продуктов их гидролитического распада, осуществленного с помощью минеральных кислот или оснований. Белковые вещества легко гидролизуются не только в присутствии кислот и оснований, но и под действием различных ферментов (протеаз, пепсина, трипсина и др.). При их распаде образуется смесь до 30 различных аминокислот. Большинство из них относится к группе аминокарбоновых кислот, а некоторые имеют ароматический и гидроароматический характер [10, с. 90]. [c.25]

    При обработке бурых углей водой извлекается 1—3% водорастворимых веществ, т. е. гораздо меньше, чем из торфа и сапропеля. В этом случае вода часто окрашивается в желтый или светло-коричневый цвет. Так как бурые угли в отличие от торфа не содержат углеводов и белковых веществ, способных гидролизоваться, можно предположить, что в водный раствор переходят только водорастворимые гуминовые вещества. Караваев [c.137]

    Часто при определении примесей в консистентных смазках в числе примесей попадают вещества органического происхождения, как, например, карбены, карбоиды из минеральных масел или белковые вещества, которые содержатся в ничтожных количествах в растительных маслах, применявшихся для приготовления смазок. Эти органические механические примеси не влияют существенно на качество смазки, если они не содержатся в ней в значительных количествах. Поэтому иногда рекомендуется выделенные механические примеси сжигать (так же, как это делается при определении золы) и таким образом устанавливать содержание несгораемых механических примесей, которые, собственно, и являются вредным комнонентом смазки. [c.747]

    Натуральный каучук, представляющий собой высокомолекулярное органическое соединение, имеется в млечном соке каучуконосных растений. В этом соке содержится 30—35% каучука и около 60% воды. Кроме того, в нем присутствуют белковые вещества, смолы, сахар, соли. Извлечение каучука производится с помощью минеральных и органических кислот. [c.330]

    Биохимическое производсто белковых веществ из углеводородов [c.358]

    Исследуемая в данной работе желатина представляет собой продукт нер ,)аботки коллагена — распространенного в природе белкового вещества. В молекулах желатины содержатся как кислотные (карбоксильные), так и основные (амино) группы. Поэтому в водных растворах желатина проявляет свойства, присущие амфотерным полиэлектролитам, т. е. происходит ионизация кислотных и основных групп  [c.151]

    Серная кислота как реагент находит применение в производстве трансформаторных и белых масел, при регенерации отработанных нефтяных масел, а также для очисти парафинов, используемых в пищевой промышленности и при производстве белковых веществ. Из масляных фракций при очистке серной кислотой в основном удаляются непредельные соединения и смолисто-асфальтеновые вещества. Вид реакций и результаты очистки зависят от температуры, длительности контактирования, расхода и концентрации серной кислоты, а также от порядка ее введения. [c.62]


    В обьиных условиях эта группа белковых веществ не растворяется в растворителях, используемых для растворения фибриллярных белков.. Особенностью первичной структуры белков, относящихся к группе кератинов, является относительно большое количество серосодержащих звеньев (Met, ys, yS - Sy ). [c.377]

    При обработке белкового вещества реактивом Миллона при кипении появляется розово-красное или малиновое окрашивание. Присутствие каких аминокислотных звеньев при этом идентифицируется Написать вероятную схему реакций. [c.394]

    Пептидная связь играет особую роль в полипептидах и белковых веществах. На свойстве многоосновных кислот реагировать с диаминами и образовывать высокомолекулярные цепные полимеры с пептидными связями основано получение полиамидной смолы найлона, успешно конкурирующего с натуральным и искусственным шелком. [c.502]

    Гидролиз белковых веществ. В жизненных процессах основную роль играют белковые вещества, поэтому проблема белков является одной из самых важных в органической химии. Белки составляют около 50% всех природных соединений по подсчету в жизненные процессы биосферы нашей планеты вовлечено 5 10 т протеинов (В. И. Вернадский). [c.539]

    По данным В.Л. Мехтиевой, общий химический состав организмов, в особенности планктонных, в значительной степени обусловливается составом их оболочек. В оболочках одноклеточных планктонных организмов наиболее распространены различные полисахариды. Древнейшие представители жизни - микроскопические морские водоросли, а также морские красные и бурые водоросли не содержат лигнина, тогда как у зеленых водорослей он имеется. Для филогенетически наиболее молодых форм растений характерно наличие клетчатки. В составе покровных тканей беспозвоночных, помимо минеральных составляющих, содержатся хитин и белковое вещество. [c.190]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    Максимум иабухаемости клейковины имеет место при температуре 28—30 °С, а при 60—70 °С белковые вещества тесто.-хлеба дена-гурируются и свертываются, освобождая при этом воду, поглощенную при набухании. При повышении температуры до 50—60 °С крахмал муки интенсивно набухает и начинается клейстеризация крахмала и разрушение внутренней мицеллярной структуры. При температуре 50—70 °С протекают процессы клейстеризации крахмала и коагуляция белков, которые обусловливают переход тесто-хлеба в состояние мякиша. Повышение температуры до 60—70 °С приводит к резкому изменению консистенции — сгущению теста. Мякиш хлеба выдерживают в печи до температуры 92—98 °С в центре для придания ему необходимой упругости [24, 251. [c.50]

    Генезис нефтяных азотсодержащих веществ — один из сложнейших вопросов современной теории происхождения нефти. В большинстве работ приводятся доводы в пользу того, что азотистые компоненты нефти образовались иа тех же нефтематеринских веществ, что и другие классы соединений, а не приобретены нефтью в ходе ее миграции и аккумуляции. Ни для одного из индивидуальных АС, обнаруженных в нефти, пока не найдено достоверного биологического предшественника, хотя и высказывались предположения об их образовании из белковых веществ [455], нуклеиновых оснований (пуринов, пиримидинов) [683], растительных алкалоидов [110, 514, 755, 756]. Л. Снайдер [110, 756] связывает наблюдаемые особенности строения нефтяных бензокарбазолов (ангулярное, но не линейное сочленение колец) со структурой типичных растительных алкалоидов — ибогаина (XXI) и аспидоспермина (XXII), предположительно преобразующихся после захоронения по следующим схемам  [c.137]

    Щелочи производят омыление жирового слоя кожи и pa i BO-репне белковых веществ. Очень опасны твердые щелочи, так как, попадая на влажную кожу, слизистые оболочки, в глаза, они действуют как наиболее концентрированные растворы. [c.47]

    Процесс отстаивания позволяет осветлять воды вследствие удаления из нее грубодисперсных взвешенных примесей, оседающих под действием силы тяжести на дно отстойника. Отстаивание воды проводят в непрерывно действующих отстойных бетонированных резервуарах. Для достижения полного осветления и обесцвечивания декантируемую из отстойников воду подвергают коагуляции с последующим фильтрованием. Коагуляция — высокоэффективный процесс разделения гетерогенных систем, в частности выделение из воды мельчайших глинистых частиц и белковых веществ. Осуществляют коагуляцию внесением в очищаемую воду небольших количеств электролитов АЬ ЗО )], Ре304 и некоторых других соединений, называемых коагулянтами. Физико-химическая сущность этого процесса в упрощенном виде состоит в том, что коагулянт, адсорбируясь иа иоверхности заряженной коллоидной частицы, нейтрализует ее заряд. Это приводит к слииатпо отдельных част1щ (коагуляции) н образованию осадка. Чем выше заряд иоиа коагу.пянта (А1 +, Ре +), тем меньше расход электролита на коагуляцию. Для коагуляции глинистых коллоидных частиц (природные воды), имеющих отрицательный заряд, применяют чаще всего соединения алюминия — сульфаты или алюминиевые квасцы. Одновременно идет процесс адсорбции иа поверхности осадка органических красящих веществ, в результате чего вода обесцвечивается. [c.26]

    Известный микробиолог Ваксман [6, с. 289] также поддерживает лигнинную гипотезу, но утверждает, что различные продукты белковых веществ играют существенную роль при синтезе гуминовых кислот. Он предполагает, что протеины реагируют с лигнином, образуя гуминовые кислоты, которые вместе с неразложив-шимися остатками растений, жиров и смол затем образуют угли (см. схему 3). [c.37]

    В зависимости от химического состава смолы все пластмассы делятся на четыре класса полимеризационные (содержащие высокомолекулярные соединения, получаемые цепиой полимеризацией), поликонденсационные (на основе высокомолекулярных соединений, образовавшихся в результате поликонденсации или ступенчатой полимеризации), иа основе природных полимеров (простые и сложные эфиры целлюлозы, белковые вещества) и на основе природных и нефтяных асфальтоп. [c.215]

    Первый период (1839—1900 гг.) характеризуется использованием полимеров природного происхождения, натуральных или модифицированных природного каучука, целлюлозы, белковых веществ. К этому времени относятся такие важнейшие технические достижения, как горячая (Ч. Гудьир, 1839 г.) и холодная (А. Паркер, 1846 г.) вулканизация каучука, получение эбонита (Т. Хэнкок, 1852 г.) и целлулоида (Д. Хьят, 1872 г.), разработка технологии пироксилинового (1884 г.) и баллиститного (1888 г.) порохов, изобретение модифицированного казеина — галалита (1897 г.). [c.381]

    Аминокислоты могут реагировать с сахарами за счет их альдегидных и гидроксильных групп. В результате получаются высокомолекулярные соединения с коллоидными свойствами. Эти свойства позволяют объяснить установленный Грегори и Ветхе-рилом факт, что белковые вещества животных исчезают бесследно при разрушении тела в естественных условиях, так как превращаются в газообразные и растворимые в воде продукты. Известно, что в организме животных не содержится сахаров, которые бы могли связать аминокислоты, образованные при гидролизе белков [И, с. 62]. [c.26]

    Основываясь на опытах искусственного обугливания растений, Террес [22] пришел к выводу, что не столько лигнин, сколько белковые вещества были исходным материалом для образования ароматических гуминовых кислот. [c.36]

    Состав сапропеля отличается от состава продуктов, которые образуются при оторфенении. Это является результатом различия как в исходном материале, так и в условиях превращения. Так, торф образуется из растительных остатков, богатых углеводами, а в образовании сапропеля принимают участие материалы, богатые преимущественно жирами и белковыми веществами. [c.42]

    Донат считает, что от белковых соединений материнского вещества в процессе его обуглероживания отщепляется сероводород и частично превращается в сульфид, а частично остается в угле в виде органической серы. Повэлл и Парр пришли к выводу, что источником серы в угле являются содержавшие серу материнские вещества растительного и животного происхождения [24]. Они считают, что в геологические эпохи, когда протекали торфо- и углеобразующие процессы, к накопленным растительным и животным остаткам вода приносила бикарбонаты железа, которые теряли СОг и превращались в карбонаты. Наряду с этим процессом в органических остатках происходило разложение белковых веществ с выделением НгЗ, который, реагируя с карбонатом железа, образовал пирит РеЗг. Частичное окисление пирита могло привести к образованию сульфатов, а непрореагировавшая сера белковых веществ оставалась в угле в виде органической серы. [c.111]

    Юровский [23, с. 66] не отрицает, что растительные белковые вещества (точнее, цистин) играли большую роль в образовании различных видов органической серы. Он подробно развил и обосновал гипотезу о минеральном происхождении серы в угле. Согласно этой гипотезе основным источником всех видов сернистых соединений в угле являются сульфаты, растворенные в морской воде, которая заливала накопленные растительные материалы в процессе их преобразования. Сюда прибывали и пресные воды, которые приносили соединения железа. Различные условия покрытия угольных пластов, состав покрова и влияние среды на процессы торфо- и углеобразования привели в одних случаях к образованию преимущественно минеральных, а в других — органических сернистых соединений в угле. Юровский придает большое значение в образовании сернистых соединений микроорганизмам, живущим в морской и пресной воде, которые способны разлагать различные серусодержащие вещества до сероводорода. Эти микроорганизмы могли бы превратить сульфаты из морской воды в сероводород, который с железом образует пирит. [c.112]

    Исключительную актуальность приобретает проблема получения иолипептидов (заменителей животных белков) путем микробиологи-четких процессов с использованием аэробных бактерий, питающихся парафинами нормального строения и синтезирующих азотистые белковоподобные вещества. Как сообщил иа VI Д1еждународном нефтяном конгрессе Шампаньи [7 ], в этом направлении во Франции достигнут определенный успех. Бактериальный процесс используется для освобожденпя масляных фракций от //-парафинов и одновременно для получения азотсодержащей массы — заменителя белковых веществ. [c.538]

    Кератины - белковые вещества из группы склеропротеидов, составляющих роговой слой эпидермиса кожи, ногтей, копыт рогов, волос, шерсти. [c.377]

    Одно из перспективных п быстро развивающихся в последнее время направлений нефтехимии заключается в биохимической переработке нефтяных углеводородов для получения белковых веществ. Эти работы были начаты во Франции в 1957 г. Было установлено, что многие виды бактерий активно размножаются в углеводородных смесях. Используя углеводороды в качестве продукта питания бактерий, превращают пх в белковые вещества, из которых главным <1оразом и состоят тела бактерий, если исключить содержащуюся в них воду. Для питания бактерий используют тяжелые нефтяные газойли. На 1 п нарафпновых углеводородов получается таким путем около 1 т белковых веществ, в которых присутствуют так, ке различные витамины п химические соединения, вызывающие > ве-личение роста животных и бактерий. [c.358]

    Гидросфера - водная оболочка Земли, включающая океаны, моря, континентальные водоемы и ледяные покровы материков. Гидросфера обуславливает существование биологической жизни на планете, так как вода - необходимый компонент всех биологических процессов. Естественные водоемы, входящие в состав гидросферы, служат источниками промышленного и бытового снабжения водой, источниками энергии, путями сообщения. Свыше 95% всех вод гидросферы приходится на долю Мирового океана, играющего важную роль в поддержании жизни на Земле путем синтеза белковых веществ и жиров в массе фитопланктона, насыщения атмосферы кислородом, регуляции обмена веществ и поддержания динамического равновесия в природе. Промышленное производство приводит к загрязнению, засорению и истощению (континентальные водоемы) гид-росфер >1, в том числе и вод Мирового океана. [c.8]

    Способность цеолитов адсорбировать молекулы определенных размеров широко используют для очистки и разделения нефтепродуктов очистки газов и жидкостей, удаления двуокиси углерода, сероводорода и других сернистых соединений, повышения октанового числа бензинов (на 5—26 пунктов) в результате удаления н-алканов. В настоящее время цеолиты широкр применяют для выделения к-алканов из нефтяных фракций —от бензиновых до газойлевых включительно с содержанием н-алканов около 20% (масс.). Выделенные нормальные парафиновые углеводороды используют при производстве белковых веществ, моющих средств и других продуктов нефтехимического синтеза. Чистота н-алканов, полученных разделением на цеолитах, значительно выше, чем при выделении другими методами (более 98% при разделении цеолитами и 90—96% при разделении карбамидом). Одновременно с н-алканами получают денормализат — смесь изопарафиновых и циклических угл ёводородов. [c.253]

    Различные процессы дегидратации играют очень важную роль в биохимии и органической технологии. Путем дегидратаиии в живой природе осуществляется синтез полисахаридов, белковых веществ, фосфатидов, лецитинов, многих эфирных масел и других веществ. В синтетический химии при помощи дегидратации получают простые и сложные эфиры, ангидриды, высшие спирты, лекарственные, взрывчатые и отравляющие вещества, а также разнообразные синтетические смолы, пластические массы и т. д. [c.450]


Смотреть страницы где упоминается термин Белковые вещества: [c.8]    [c.629]    [c.23]    [c.38]    [c.141]    [c.167]    [c.540]   
Синтезы органических препаратов Сб.2 (1949) -- [ c.0 ]

Синтезы органических препаратов Справочник Сборник 2 (1949) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте