Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложноэфирная группа

Рис. 24. Включение молекул п-замещенного (а) и м-замещенного (б) фенилацетатов в циклоамилозу, приводящее к вынужденному сближению 2-ОН группы амилозы и сложноэфирной группы субстрата в случае б Рис. 24. <a href="/info/1901741">Включение молекул</a> п-замещенного (а) и м-замещенного (б) фенилацетатов в циклоамилозу, приводящее к <a href="/info/1828838">вынужденному сближению</a> 2-ОН <a href="/info/1539378">группы амилозы</a> и сложноэфирной группы субстрата в случае б

    В сложных полиэфирах происходит межцепной обмен по обоим механизмам между карбоксильной (или гидроксильной) и сложноэфирной группами, а также между сложноэфирными" группами макромолекул. Эти реакции осуществляются, как правило, под влиянием катализаторов и при повышенной температуре. [c.160]

    Новейшим способом получения олигомеров со сложноэфирными группами в основной цепи является полимеризация лакто-нов, в частности е-капролактона, в присутствии диолов или триолов [3, 4]  [c.524]

    Химически связанный кислород в окисленном битуме распределяется следующим образом от 40 до 60 % (масс.) в виде сложноэфирных групп (—СООК), остальное количество примерно поровну между гидроксильными (—ОН), карбоксильными (—СООН) и карбонильными (- СО) группами. [c.106]

    Интересный тип высокопрочных ненаполненных резин представляют собой резины на основе некристаллизующихся каучуков, содержащих карбоксильные и омыляемые сложноэфирные группы, вулканизация которых осуществляется окисями металлов. Структуру этих резин также можно рассматривать в рамках схемы, приведенной выше-на рис. 7,6 при этом роль полифункциональных узлов играют микрокристаллиты солевой группы поперечных связей, несовместимые с каучуковой матрицей. Особенность структуры таких вулканизатов состоит в том, что солевые связи между макромолекулами, образующиеся при вулканизации, являются весьма лабильными. При растяжении резин эти связи могут диссоциировать, что сопровождается их перераспределением, приводящим к выравниванию напряжений в результате прочность резин достигает 40—50 МПа. [c.86]

    Принципиальное улучшение свойств и расширение областей применения нового типа эластомеров — бутадиен-стирольных термоэластопластов— достигается модификацией бутадиеновой части сополимера введением карбоксильных или сложноэфирных групп. Увеличение межмолекулярного взаимодействия за счет водородных связей карбоксильных групп и, в еще большей степени, образование солевых карбоксильных связей повышает сопротивление разрыву даже при 100 °С, уменьшает остаточное удлинение при сохранении способности перерабатываться методами литья и экструзии [29]. Реакция оксосинтеза с блоксополимером протекает более эффективно, чем с полиизопреном, по-видимому, вследствие большего содержания боковых винильных групп и большей реакционной способности бутадиеновых звеньев. [c.236]

    К нитрильной группе, а сера играет роль ингибитора окислительных процессов, развивающихся при старении [18]. Процесс вулканизации в присутствии кристаллогидратов хлоридов металлов начинается, вероятно, с реакции гидролиза, происходящего по сложноэфирным группам [16]. [c.393]


    С целью создания каучуков, содержащих группы, способные превращаться при вулканизации в солевые с регулируемой скоростью, предложено вводить сложноэфирные группы, отстоящие от основной полимерной цепи на два и более атома [3]. Такие каучуки получаются эмульсионной сополимеризацией бутадиена или его смесей со стиролом, а-метилстиролом или акрилонитрилом и мономеров, содержащих сложноэфирную группу, в которых двойная связь находится в кислотной части сложноэфирной группы и присоединена к ней через органический радикал, содержащий два или более атома в цепи. Наибольшее значение среди таких мономеров приобрели метакрилаты, синтез которых основан на технически доступном сырье и протекает практически количественно [4]  [c.405]

    По литературным данным [39] около 70% карбоксильных радикалов получаются из перекиси с выделением СО2, которые образуют полимерные цепи с функциональными СООН-группами и не содержат сложноэфирной группы —СО—. [c.424]

    Установлено, что кислород связывается с молекулами битума в виде гидроксильных, карбонильных, карбоксильных и сложноэфирных групп, В среднем в сложноэфирных группах содержится 60% химически связанного кислорода. Остальные 40 /о распределены примерно поровну между гидроксильными, карбоксильными и карбонильными группами в битумах, полученных при- температуре окисления 150 °С, а в битумах, полученных при 250 °С, на гидроксильные и карбонильные группы приходится приблизительно по 16—18% и на карбоксильные 5—8%. [c.45]

    Происходящее при окислении образование молекул с большой молекулярной массой обусловлено в основном реакциями двух типов связыванием двух молекул через сложноэфирную группу и посредством связи углерод — углерод. Конденсация по первому типу преобладает при низких температурах, по второму — при высоких. [c.45]

    Основным вопросом химии превращений сложных эфиров в процессе жидкофазной гидрогенизации является направление расщепления сложноэфирной группы  [c.182]

    До сих пор нет прямого подтверждения наличия кислородсодержащих функциональных групп в молекулах ископаемых порфиринов. В работе [824] масс-спектрометрически с использованием стеклянной обогреваемой системы напуска показано присутствие карбоксильных групп в молекулах порфиринов, выделенных из горючего сланца, сланцевой смолы и нефти. Тем не менее особенности поведения карбоксилированных порфиринов при масс-спектрометрическом анализе [825] не дают возможности получить достоверную информацию о карбоксилированных соединениях в смеси ископаемых порфиринов. Имеются указания на небольшие количества (до 2%) порфиринов с остатками карбоновых кислот и сложноэфирными группами [825—827] в битуминозных компонентах осадочных пород. Однако более поздние исследования [51, 319] не подтвердили этих данных, по крайней мере для порфиринов нефти и гилсонита. [c.147]

    Все подобные реакции термического разложения слол ных эфиров, очевидно, протекают через упорядоченные промежуточные продукты, в которых атом Н, находящийся рядом со сложноэфирной группой, образует водородный мостик с атомом О или 5 карбонильной группы или группы С = 5  [c.61]

    Применение ИК спектроскопии для выявления карбоксильных,, карбонильных или сложноэфирных групп ограничивается сложностью выделения достаточно чистого концентрата ванадилпорфиринов. Разработанный экстракционно-хроматографический метод выделения ванадилпорфиринов [811, 818, 819] позволяет получить концентрат ванадилпорфиринов нефтей, практически не содержа- [c.147]

    Кислород входит в состав нефтяных смол и асфальтенов в форме гидроксильных (спиртовых и фенольных), карбоксильных, эфирных (простых, сложных, лактонных) и карбонильных групп [1048]. В изучавшихся в последней работе [1048] ВМС главными типами кислородных функций были гидроксильные и карбонильные, тогда как в исследованных нами нативных асфальтенах западносибирской и таджикской нефти—сложноэфирные группы [395, 396]. В средней молекуле асфальтенов из западносибирской нефти (месторождение Советское) содержится около двух сложноэфирных связей. Это показывает, что атомы кислорода выполняют в этих молекулах важную роль, сшивая их отдельные блоки. [c.190]

    Образуется диметиловый эфир салициловой кислоты — он одновременно и простой, и сложный. Гидролизуется только сложноэфирная группа. Конечный продукт — простой метиловый эфир салициловой кислоты. [c.200]

    Гидрирование карбоксильной и сложноэфирных групп. .. 26 Гидрирование полифункциональных кислородсодержащих [c.3]

    Если вести окисление гудрона при сравнительно низкой температуре (150—200° С), то наблюдается накопление в окисленном битуме не карбоксильных, а сложноэфирных групп [40, 53]. Содержание низкомолекулярных кислородсодержащих продуктов в этом случае невелико (0,02—0,03%), а накопление высокомолекулярных продуктов реакции значительно. Отчетливое преобладание образования сложноэфирных групп (66%) наблюдалось при окислении гудрона и крекинг-остатка из анастасьевской нефти при температуре 275° С [56, 57]. Баланс распределения кислорода в продуктах окисления показан в табл. 37. Аналогичная картина наблюдалась и в распределении кислородных соединений в отдуве, образовавшемся при окислении прямогонного гудрона. Однако из этих данных не следует, что битум является исключением из общего правила окисления органических соеди- [c.138]


    Сходство спектров вторичных амидов и сложных эфиров становится легко объяснимым, если предположить, что 1ЧН- и сложноэфирная группы оказывают одинаковое влияние на диссоциативную ионизацию. Молекулы диолов и диаминов характеризуются низкой устойчивостью к электронному удару и в их масс-спектрах отсутствуют пики молекулярных ионов. [c.111]

    Представляют интерес проведенные в последние годы во ВНИИСК исследования по получению эмульсионных каучуков с функциональными группами. Введение в полимерную молекулу карбоксильных, а особенно легкоомыляемых сложноэфирных групп, позволяет получать на их основе резины, характеризующиеся высоким сопротивлением разрыву при обычной и высокой (150 °С) температурах, а также повышенным сопротивлением тепловому старению (см. гл. 22). [c.11]

    Вулканизаты наполненного модифицированного каучука СКИ-ЗМ характеризуются высокими значениями напряжения при растяжении и сопротивления разрыву (на уровне этих показателей для натурального каучука), более высокой эластичностью при 20 и 100 °С и меньшим теплообразованием. Наличие в полиизопрене полярных групп (галогена и гидроксильной) обеспечивает некоторое повышение прочности невулканизованных резиновых смесей и вулканизатов, но введение структурирующих низкомолекулярных веществ (например, диизоцианатов) значительно усиливает эффект модификации. Присутствие в полиизопрене сложноэфирных групп в количестве 1—2% (мол.) практически-не влияет на когезионную прочность невулканизованных сажевых смесей вследствие незначительного увеличения межмолекулярного взаимодействия и взаимодействия с наполнителем. В присутствии окисей и гидроокисей двухвалентных металлов, смеси на основе полиизопрена со сложноэфирными группами в жестких режимах смешения (140°С, из-за трудности омыления) обнаруживают увеличение когезионной прочности, при этом возможно образование бессерных солевых вулканизатов с сопротивлением разрыву около 20 МПа. [c.232]

    Модификация ДСТ-30 с помощью окиси и двуокиси углерода позволила получить полимеры с карбоксильными и сложноэфирными группами в бутадиеновой части. При введении в модифицированный термрэластопласт окисей и гидроокисей металлов достигается увеличение тепло- и температуростойкости при сохранении вязкотекучих свойств, достаточных для осуществления экструзии материала [27]. Созданием композиций на основе термоэластопласта обычно преследуют цель снизить е.го стоимость, поэтому вводят такие материалы, как масла, различные смолы, мел и т. д. Однако модификация бутадиен-стирольного термоэластопласта хлоропреновыми, бутадиен-нитрильными каучуками и друсими высокомолекулярными добавками позволяет улучшить их масло- и бензостойкость, адгезию и снизить температуру переработки без существенного снижения физико-механических свойств [28]. Из композиций на основе бутадиен-стирольных термоэластопластов изготовляют формовые изделия, резиновую обувь, пластины, покрытия для полов, листы для печатных матриц, спортивные товары (ласты, маски, тенисные мячи), кожухи для оборудования и приборов, эластичную тару и др. [c.290]

    В отличие от карбоксилсодержащих каучуки со сложноэфирными группами могут получаться полимеризацией не только в кислой, но и в слабощелочной среде (предпочтительно при pH < 10), что позволяет использовать такие доступные биодеструктируемые эмульгаторы, как мыла синтетических жирных кислот, обычно в количестве 4 ч. (масс.) на 100 ч. (масс.) основных мономеров. Применяются обычные инициирующие системы — гидроперекись+ + ронгалит + трилоновый комплекс железа (для БЭФ и БСЭФ) и персульфат-4-триэтаноламин (для БНЭФ) при температуре полимеризации 5—10 и 30 °С соответственно. В отличие от других функциональных каучуков (карбоксилсодержащих, метилвинилпи-ридиновых) каучуки со сложноэфирными группами не содержат ионизируемых при коагуляции групп, вследствие чего процесс их выделения идентичен выделению аналогичных каучуков без функциональных групп. [c.406]

    Технические свойства резин на основе сложноэфирных каучуков зависят от системы вулканизации. Так, серные вулканизаты этих каучуков не имеют преимуществ перед серными вулканизатами соответствующих нефункциональных каучуков. Ценные свойства резин на основе описываемых каучуков определяются способностью отстоящих от полимерной цепи сложноэфирных групп взаимодействовать в условиях вулканизации с гидроокисью кальция с образованием карбоксилатнокальциевых солевых групп [c.406]

    При сравнении температуры стеклования уретановых эластомеров на основе сложных полиэфиров и олигомердиолов карбоцепной природы установлено, что определяющим является концентрация сложноэфирных групп и водородных связей в полимере. [c.537]

    Растворимость в воде и гидролитическая стабильность. Большинство антиоксидантов имеет низкую растворимость в воде. Однако некоторые производные п-фенилендиамина имеют высокую растворимость в водных растворах минеральных и органических кислот (например, некоторые алкилфенилзамещенные и ди-алкилпроизводные). Это необходимо учитывать при разработке технологии промывки и водной дегазации каучуков. Необходимо также учитывать, что некоторые производные фенолов имеют повышенную растворимость в водных растворах щелочей. Гидролитическая стабильность является очень важным показателем при выборе антиоксидантов. Как правило, все наиболее распространенные антиоксиданты при умеренных температурах и в нейтральных средах гидролитически стабильны. Вместе с тем, если в молекуле антиоксиданта имеются определенные группировки атомов (напри-мер, сложноэфирные группы), то в условиях контакта с водой (при определенных значениях pH и повышенных температурах) может наблюдаться гидролиз антиоксидантов. В результате может произойти потеря антиоксидантом свойств ингибитора цепных [c.645]

    Первой стадией пептидного синтеза Меррифилда является сшивание аминокислот (с защищенной азотной функцией) схлор-метилированным полистиролом путем образования сложноэфирной группы. Эту стадию можно ускорить, используя калиевую соль Вос-аминокислоты и молярное количество 18-крауна-6 в ДМФА (972]. [c.131]

    Префиксы для сложноэфирных групп были приведены выше. Другой тип префиксов для таких групп, как НС (О) О—, образуется добавлением частицы окси к названию соответствующей ацильной группы, например СбН5С(0)0— бензоилокси-или СбН С(0)0— циклогексилкарбонилокси-. [c.136]

    Несмотря на разнообразие нефтей, сэдержание углерода и водорода в асфальтенах колеблется в сравнительно узких пределах С 80—86% (масс.), Н 7,3—9,4% (масс.), отношение С Н также сравнительно постоянно и равно 9—П. Различие в содержании гетероатомов значительно больше. По данным Сергиенко содержание кислорода в асфальтенах в зависимости от природы нефти может колебаться от 1 до 9, серы, от О до 9, азота от О до 1,5— 3,0% (масс.). Химические и спектральные методы анализа показали, что кислород в асфальтенах входит в состав гидроксильных, карбонильных, карбоксильных и сложноэфирных групп. В нативных асфальтенах преобладают гидроксильные и карбонильные группы до 80% (масс.). В асфальтена.ч из окисленных битумов преобладают сложноэфирные группы [ 60% (масс.) кислорода] Некоторые исследователи считают, что 1 ера входит в состав суль фидных мостиков между фрагментами молекулы асфальтенов Другие, в том числе Сергиенко, придерхиваются мнения, что ато мы серы включены в циклические структурные элементы, содер жащие кольцо тиофена или тетрагидрэтиофена. Спектральными методами были также обнаружены циклические соединения, содержащие сульфоксидную группу. [c.211]

    Они содержат не только ацетальргые группы, но и neKOTopot количество гидроксильных и сложноэфирных групп. В зависимости от степени химического превращения изменяются и свойства поливипилацеталя. Поливинилацетали нашли широкое промышленное применение благодаря хорошей адгезии, эластичности и прочности получаемых из них клеевых пленок. [c.174]

    Кислород в асфальтенах представлен гидроксильными, карбоксильными и сложноэфирными группами [6,30,68,75]. В гидроксильные группы входит до 75% кислорода, 53...80% которого включено в фенольные ОН-группьг, значительная часть которых в виде набора из 2 и более ОН-групп может находиться при одном и том же ароматическом кольце или на соседних краевых атомах конденсированной полициклической системы при возможном соседстве с карбонильной группой. Карбонильный кислород обнаруживается в составе карбоксильных, кетонных и хинонных (до 6%) групп [76,77]. Число сложноэфирных групп доходит до 2 на среднюю молекулу, указывая на выполнение атомом кислорода роли сшивки полициклических фрагментов [6,30,75]. [c.15]

    Такой характер изменения е полиарилатов на основе изомеров карборана свидетельствует об уменьшении м-участка полимерной цепи с дифенил-м-карбораном, обусловленного увеличением конформационного набора. Низкочастотный максимум tgo обусловлен размораживанием подвижности участков полимерных цепей, содержащих полярные сложноэфирные группы и фенольные фрагменты. И так как этот участок непосредственно связан с карбора-новыми ядрами, высокая полярность последних оказывает существенное влияние на характер и интенсивность теплового движения данных кинетических единиц. [c.187]

    Зависимость 1й( 2/ он) от числа углеродных атомов п в ацильной части сложного эфира (V) [при различных значениях числа углеродных атомов в алкильном заместителе в имидазолах (VI)) представлена на рис. 19. При значениях п < 5—6 величина слабо зависит отп при изменении длины углеводородных цепей как в том, так и другом реагенте. Это может быть связано с тем, что при образовании переходного состояния реакции имидазольное кольцо и сложноэфирная группа должны быть взаимно расположены таким образом, что короткие алкильные цепи реагентов просто не могут дотянуться друг до друга. При больших значениях п контакт цепей становится возможным и их взаимодействие приводит к значительному ускорению реакции. Система симметрична в том смысле, что увеличение п как в сложном эфире, так и в нуклеофиле (VI) приводит к одинаковому возрастанию скорости. В среднем введение каждой метиленовой группы (свыше первых 5—6) приводит к ускорению реакции в 2,5 раза. Это отвечает понижению свободной энергии активации реакции на 550 кал/моль (2,3 кДж/моль) на каждую метиленовую группу, что представляет собой величину, типичную для гидрофобных взаимодействий углеводородов [5, 9, 13]. [c.76]

    Сильный полифункциональный катализ описан [54] для случая метанолиза стероида (XXXIX), содержащего сложноэфирные группы в положениях 4, 16. Группа в положении 4, как и все алифатические [c.99]


Смотреть страницы где упоминается термин Сложноэфирная группа: [c.63]    [c.229]    [c.407]    [c.354]    [c.371]    [c.480]    [c.299]    [c.651]    [c.287]    [c.91]    [c.140]    [c.91]    [c.101]    [c.111]   
Смотреть главы в:

Поверхностно-активные вещества -> Сложноэфирная группа

Поверхностно-активные вещества -> Сложноэфирная группа

Поверхностно-активные вещества -> Сложноэфирная группа

Поверхностно-активные вещества -> Сложноэфирная группа

Поверхностно-активные вещества -> Сложноэфирная группа


Химическое строение и физические свойства полимеров (1983) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте