Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инсулиновый насос

    Установление связи между микрососудистыми осложнениями при сахарном диабете и гипергликемией [46] привело к интенсификации инсулиновой терапии либо многократными ежедневными инъекциями инсулина, либо непрерывным его вливанием в надежде, что это улучшит метаболический контроль и тем самым предотвратит возникновение последующих осложнений. Сравнив содержание сахара в крови больных инсулин-зависимым диабетом при использовании искусственной поджелудочной железы (система с замкнутым контуром), насоса для непрерывного вливания инсулина (открытая система) и интенсифицированной обычной инсулиновой терапии, авторы [37] не обнаружили заметной разницы между этими тремя режимами. Они полагают, что все три метода в принципе способны обеспечить примерно одинаковую, почти нормальную гликемию. [c.318]


    Движущей силой в исследовании сенсоров было ярко выраженное инстинктивное понимание возможности их широких практических приложений. Эти исследования стимулировались прежде всего потребностями медицины. Возможность немедленного анализа клинических препаратов, очевидно, одинаково привлекает внимание и врачей, и пациентов, хотя некоторые национальные службы здравоохранения испытывают трудности с внедрением этой философии. Более привлекательной, вероятно, является возможность непрерывного in vivo мониторинга метаболитов, лекарственных препаратов и белков с помощью миниатюрных и портативных систем. Отличным примером клинического приложения является сенсор глюкозы для больных диабетом, ставший классическим объектом исследований в области биосенсоров. В данном случае необходимо следить за концентрацией глюкозы в крови как in vivo, так и in vitro и обеспечить возможность полного автоматического контроля за состоянием больного с помощью инсулинового насоса. Имплантируемые глюкозные сенсоры прокладывают пути для других приложений. Дополнительной серьезной проблемой здесь все же остается биологическая совместимость. [c.10]

    Предварительные технические условия использования сенсоров в медицине детально обсуждаются ниже. Очевидно, однако, что для управления инсулиновым насосом можно использовать только сигнал сенсора, быстро реагирующего на изменение концентрации глюкозы в крови и характеризующегося надежностью, селективностью и отсутствием дрейфа базовой линии. Объединение такого сенсора с неизбежно довольно сложным имплантируемым инсулиновым насосом (который должен был быть опробован в 1986 г.) позволит создать эффективную искусственную поджелудочную железу. Подкожные сенсоры [9] обладают очевидными преимуществами в смысле доступности, однако во время приема пищи их сигналы запаздывают по сравнению с изменениями концентрации глюкозы в крови. Найти решение этой проблемы довольно трудно, поскольку физиологическая концентрация инсулина после еды увеличивается очень быстро [1]. Кроме того, для управления имплантированным насосом сигнал должен как-то передаваться через кожу к насосу. Поэтому первые подкожные сенсоры, видимо, лучше использовать совместно с обычными способами введения инсулина под кожу (инъекцией или с помощью дозирующего насоса), обрабатывая данные в уме или при помощи специализированного компьютера [10]. [c.574]

    Но, вероятно, наибольшие перспективы имеет использование ферментных электродов как биосенсоров внутри или на поверхности живою организма. Сенсоры, например, лактата и глюкозы исключительно малого размера можно помещать во внутрисосудистые катеторы для контроля состояния тяжелобольных пациентов [5, 10]. Трудно переоценить важность такого показателя, как концентрация лактата в крови, который является мерой степени оксигенации ткани или сердечной деятельности. Имеются также данные, что высокое содержание лактата в материнском молоке во время работы матери может вредно действовать на новорожденного. Гипоксантин может оказаться ценным индикатором гипоксии. Имплантируемые сенсоры глюкозы почти наверняка можно приспособить для контроля работы инсулиновых насосов [10]. Уже одно только использование ферментных электродов при диагностировании и лечении диабета оправдывает огромные усилия по объединению энзимологии с электрохимией. [c.18]


    Авторы [5] разработали и испытали на собаках глюкозооксидазный ферментный электрод, основанный на принципе регистрации расхода кислорода. Сенсор состоял из двух кислородных электродов, покрытых полипропиленовой мембраной и помещенных в круглый (15 мм в диаметре) пластиковый корпус. Фермент иммобилизовали на одном из электродов уменьшение тока этого электрода сравнивали с сигналом другого, контрольного, электрода. В диапазоне 0-20 ммоль/л соотношение между разностным током и концентрацией глюкозы было нелинейным, причем сигнал существенно уменьшался при понижении давления кислорода. Электроды, имплантированные в подкожную ткань собак, регистрировали уровни глюкозы, соответствовавшие приблизительно половине уровня глюкозы в крови. Сконструировали также имплантируемую систему с замкнутым контуром, состоящую из сенсора и воз-вратно-ноступательного инсулинового насоса, но она оказалась не в состоянии поддерживать нормальную гликемию у собак, больных диабетом. По мнению авторов, это связано с занижением сенсором истинного содержания глюкозы в ткани из-за низкого /7О2 несмотря на дифференциальный режим его работы. [c.300]

    Поиски лучших методов лечения инсулин-зависимого диабета и связанных с ним осложнений в последнее десятилетие привели к разработке новых устройств для инсулиновой терапии. Для врачей-клиницистов и пациентов, страдающих диабетом, были созданы системы непрерывной подачи инсулина (инсулиновые насосы), состоящие из резервуара, насоса и источника питания, объединенных в один портативный блок. В настоящее время в нескольких лабораториях с успехом разрабатывают портативную саморегулируемую систему, объединяющую имплантируемый глюкозный сенсор с устройством для подачи инсулина. Эту систему принято называть системой с замкнутым контуром в отличие от предыдущей несаморегулируемой системы, известной как система с открытым контуром (рис. 22.1). На рис. 22.2 показаны трафики подачи инсулина системами с открытым и замкнутым контуром в сравнении с аналогичными графиками для физиологической регуляции секреции инсулина. [c.316]

    Неустойчивость реакции организма на подкожное введение инсулина также дала толчок к созданию приборов, способных вводить инсулин внутривенно, что физиологически более целесобразно. Требуемое количество инсулина заметно варьирует в зависимости от приема пищи, физической нагрузки, стрессов, телесных повреждений, инфекций и даже времени суток. Поэтому значительное внимание привлекают приборы, которые могут непрерывно следить за содержанием глюкозы в крови и выходной сигнал которых можно использовать для управления инсулиновым насосом. Именно это достоинство такой искусственной поджелудочной железы [2] как магнитом почти неминуемо привлекает тех, кто больше интересуется применением биосенсоров в медицине, чем просто обычными измерительными приборами. [c.569]

    Между тем имплантируемые глюкозные сенсоры, не связанные с насосами, все еще имеют значительные преимущества, если необходимо дать тревожный сигнал о гипогликемии, предупредить надвигающуюся гипергликемию или кетоацидоз и вообще получать непрерывную информацию о содержании глюкозы в крови, что даст возможность пациенту самому скорректировать и отрегулировать инсулиновую терапию. [c.298]


Смотреть страницы где упоминается термин Инсулиновый насос: [c.210]    [c.12]    [c.570]    [c.573]    [c.98]    [c.98]   
Биосенсоры основы и приложения (1991) -- [ c.12 , c.18 , c.316 , c.569 ]




ПОИСК







© 2024 chem21.info Реклама на сайте