Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полная автоматизация процессов газовой хроматографии

    ПОЛНАЯ АВТОМАТИЗАЦИЯ ПРОЦЕССОВ ГАЗОВОЙ ХРОМАТОГРАФИИ [c.196]

    Легкость аппаратурного оформления. По сравнению с некоторыми другими физико-химическими приборами газовые хроматографы относительно дешевы, более надежны, затраты на установку и эксплуатацию их меньше. Для работы на них не требуется специальной квалификации. Кроме того, имеется возможность полной автоматизации процесса анализа, при этом практически исключаются субъективные ошибки. [c.18]


    Перспективы пр именения газовой хроматографии для полной автоматизации производственных процессов. Краткое описание аргонового хроматографа фирмы Руе . [c.205]

    Полная автоматизация процессов газовой хроматографии поз-Б0Л1ГГ обеспечить как непрерывное функционирование газовых хроматографов, так и автоматическую обработку значительного объема информации, получаемой в результате каждого анализа. [c.197]

    Четырехканальная система обработки данных Виста-40Ь фирмы Varian (США) позволяет обрабатывать данные любых типов хроматографов и автоматизировать их работу одновременно. Система имеет достаточно большую оперативную память и дополнительную встроенную память на 2-х плоских дисках по 90 К каждый. Это позволяет проводить вычисление дрейфа нулевой линии и перепостроение хроматограмм без дрейфа нулевой 1инии. Система имеет также встроенный двухканальны й графопостроитель. С целью полной автоматизации процесса хроматографического анализа система Виста-401 может объединяться с четырьмя газовыми или жидкостными хроматографами, причем и газовые и жидкостные хроматографы могут объединяться в единой системе с Виста-401 . [c.388]

    Основными достоинствами препаративной газовой хроматографии как метода разделения смесей являются универсальность, высокие селективность и эффективность разделения, а также возможность полной автоматизации разделительного процесса. [c.205]

    Развитие препаративной газовой хроматографии происходило параллельно и на основе развития аналитической газовой хроматографии, когда, с одной стороны, возникла настоятельная необходимость в получении множества индивидуальных соединений достаточно высокой степени чистоты, а с другой стороны, выяснились ограниченные возможности таких распространенных методов, как дистилляция, экстракция, кристаллизация и т. д. Первоначально препаративное направление развилось именно как дополнение к этим общепризнанным методам. Очень быстро выяснились и достоинства, и ограничения метода препаративной газовой хроматографии. К числу достоинств относятся универсальность, обеспечение высокой селективности и эффективности разделения, возможности выделения одного или нескольких компонентов из сложных смесей с достижением за один цикл высоких степеней обогащения, простота процесса и возможность его полной автоматизации. К числу недостатков относятся сравнительно низкая удельная производительность и трудности улавливания веществ из газового потока. Препаративная хроматография применяется в настоящее время главным образом как лабораторный метод разделения веществ, и поэтому ее преимущества бесспорны, а недостатки не столь существенно важны. Следует ожидать, что препаративный хроматограф станет такой же неотъемлемой принадлежностью химических лабораторий, как аналитический газовый хроматограф в настоящее время и ректификационная колонка в прошлом. [c.5]


    Хроматографический анализ в настоящее время является самым распространенным видом анализа сложных смесей. Так, из всего объема анализов, проводимых в химической промышленности за рубежом, на долю хроматографического метода анализа приходится в среднем 45%, а в таких отраслях, как нефтехимия, нефтепереработка, газовая промышленность, — до 80—90%. Парк хроматографов, находящихся сейчас в эксплуатации во всем мире, составляет 70 тыс. шт. [Л. 101, 109]. Совершенствование хроматографических анализаторов привело к еозникновению противоречия между их большими потенциальными возможностями в смысле точности и экспрессности анализа и ручными способами обработки результатов. Информация, получаемая с хроматографов, не может быть использована непосредственно ни в аналитической практике, ни для управления производственными процессами и нуждается в математической обработке. По данным фирмы IBM [Л. 129] для обработки данных с 30 хроматографов в промыщленной лаборатории необходимо около 100 человек при их полной загрузке. Проблема обработки результатов тем более важна, что автоматизация обработки помимо экономии времени (примерно до 90% Л. 158]) позволяет значительно повысить точность анализа, дает возможность использовать хроматографы как измерительные преобразователи В автоматических системах управления производственными процессами. Применение хроматографов в производстве дает такой большой экономический эффект [Л. 13], что затраты окупаются в короткие сроки. Однако положение с автоматической обработкой хроматографической информации все еще неблагополучно, несмотря на то, что только за рубежом этим вопро- [c.5]

    В 20—30-е годы параллельно с широким внедрением в практику классических микроаналитических методов появилось множество их модификаций, не вносивших, однако, существенных изменений в основу метода [24—29]. Принципиальным шагом вперед было создание в 40-е годы метода пустой трубки [4, 30—32], предложенного для СН-анализа, разработка способа прямого определения кислорода [34—36], а в 50-е годы — введение кислорода в реакционную зону при определении азота по Дюма —Преглю [37]. Последний прием впоследствии сыграл большую роль при создании автоматических элементных анализаторов. Благодаря ему удалось в одном процессе совместить определение С и Н с определением азота по Дюма. Такое слияние двух методов в один открыло новые возможности более эффективного количественного окисления не только органических, но и элементоорганических соединений одновременно за счет совместного действия газообразного кислорода и связанного кислорода твердых окислителей. Работы в этом направлении удачно совпали по времени с интенсивным развитием газовой хроматографии как способа разделения газообразных веществ и термокондуктометрии как средства их детектирования. Именно такое совпадение позволило впервые в элементном анализе созда[ть способ одновременного определения из одной навески трех главных элементов-органогенов С, Н и N. Заложенный в этом методе принцип уже допускал осуществление полной автоматизации анализа [38—41]. [c.8]


Смотреть главы в:

Приборы для хроматографии -> Полная автоматизация процессов газовой хроматографии




ПОИСК





Смотрите так же термины и статьи:

Автоматизация процессов

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2025 chem21.info Реклама на сайте