Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексообразование, применение нри хроматографии

    Помимо широкого использования для аналитических и препаративных целей, газовая хроматография находит важное применение как метод быстрого и удобного исследования физико-химических свойств различных веществ и взаимодействия их между собой (определение коэффициентов активности, теплот адсорбции, теплот комплексообразования и др.). [c.233]

    Применение комплекса современных физических и химических методов исследования (молекулярная перегонка, хроматография, кристаллография, инфракрасная спектроскопия и масс-спектроскопия, комплексообразование с карбамидом и тиокарбамидом) к изучению строения высокомолекулярных парафинов позволило сделать новый шаг к более глубокому познанию химической природы этого важного и широко распространенного в природе класса углеводородов. Полученные новые экспериментальные данные не только не поколебали, но еще более подкрепили некоторые из основных положений о химической природе парафинов и церезинов, к которым пришли различные исследователи на основании применения других, преимущественно химических и физико-химических методов. [c.107]


    Однако несмотря на высокую эффективность н-алканов при-обезмасливании петролатумов высокая стоимость делает их применение на промышленных установках маловероятным. В связи с этим в качестве модификаторов структуры твердых углеводородов при обезмасливании петролатумов были исследованы фракции, выделенные из мягкого и твердого парафинов холодным фракционированием и комплексообразованием с карбамидом, которые, по данным газо-жидкостной хроматографии и масс-спектрометрического анализа, содержали 35—40% (масс.) н-алканов С20— 2 Применение таких фракций в процессе обезмасливания петролатума показало (рис. 72), что скорость фильтрования суспензии петролатума увеличивается при более высоких их концентрациях, чем при введении индивидуальных н-алканов. Полученные при этом церезины характеризуются более высокой температурой плавления (рис. 73) и меньшим содержанием масла. [c.185]

    Несмотря на сравнительно отчетливую химическую специфичность группы рзэ, отделение их от многих примесей обычными способами представляет далеко не простую задачу, особенно в ряде отдельных случаев. Ионообменный метод позволяет успешно проводить такие трудные разделения, а также оказывается полезным и в более простых, часто уже ставших классическими случаях анализа. В этом отношении хроматографический метод обладает очевидными преимуш,ествами. Так, ионообменное разделение невесомых количеств элементов возможно без применения носителей высокое качество разделения достигается большей частью в одну стадию, так как при квалифицированном проведении анализа загрязнения разделяемых компонентов не происходит, что обычно неизбежно при выделении нерастворимых осадков из растворов ионообменный способ позволяет проводить комплексное разделение сложных смесей за одну операцию, тогда как при разделении в растворе потребовалось бы применить несколько последовательных операций и, наконец, в хроматографии удалось наиболее эффективно использовать процессы комплексообразования, которые до этого в практике разделений применялись очень ограниченно. [c.109]

    Использование нево шых растворителей в аналитической практике дает возможность расширить области их применения в других методах анализа (осаждения, комплексообразования, окисления—восстановления, хроматографии, электрометрических методах и т. д.) и увеличить ассортимент веществ для приготовления титрованных растворов, пригодных для титрования как мономерных, так и полимерных соединений. [c.155]

    Разработка методики с последовательным применением хроматографии на полярных и неполярных адсорбентах, комплексообразования с карбамидом в сочетании с вакуумпой перегонкой к перекристаллизацией полученных фракций из раствора в этиловом эфире позволила Н. И. Черножукову и Л. П. Казаковой провести систематическое исследование твердых углеводородов и дать о них принципиально новое представление как о многокомпонентной смеси (см. гл. 2). Парафины, церезины и восковые продукты, получаемые на их основе, в зависимости от назначения должны обладать определенной совокупностью свойств, которые обусловлены химическим составом твердых углеводородов и структурными особенностями их компонентов. Многие эксплуатационные свойства парафинов и церезинов зависят от соотношения в них углеводородов-хшрямшпг разветвленными парафиновыми [c.21]


    Одна из глав посвящена методам разделения компонентов нефтей (ректификация, термодиффузия, жидкостно-адсорбционная хроматография, адсорбция на цеолитах, комплексообразование с карбамидом и тиокарбамидом и др.), эффективность которых предопределяет успешное применение методов анализа при последующем исследовании отдельных нефтяных фракций. Широко представлены методы исследования химического состава нефтей, включая как углеводородные, так и гетероатомные компоненты (различные варианты определения группового углеводородного и структурно-группового состава нефтяных фракций). [c.4]

    На практике определяют времена удерживания в зависимости от молярной доли Св комплексообразователя. По временам удерживания определяют коэффициенты распределения Г и по углу наклона прямой зависимости Г от Св находят константу устойчивости комплекса К. Большой экспериментальный материал но применению методов газо-жидкостной хроматографии к изучению комплексообразования углеводородов с одной и двумя двойными связями приведен в серии работ Генкина с сотрудниками [41—43]. [c.241]

    Применение аффинной хроматографии для количественной оценки специфического комплексообразования [c.44]

    Применение аффинной хроматографии для оценки комплексообразования 45 [c.45]

    Твердые алканы делят на две группы веществ — собственно парафин и церезин, различающиеся по кристаллической структуре, химическим и физическим свойствам. При одинаковой температуре плавления церезин отличается от парафина большей молекулярной массой, плотностью и вязкостью. Церезин энергично реагирует с дымящей серной кислотой, с соляной кислотой, в то время как парафин реагирует с ними слабо. При перегонке нефти церезин концентрируется в остатке, а парафин перегоняется с дистиллятом. Ранее делали вывод о том, что церезин представляет собой изоалканы. Однако более высокая температура кипения у церезина, чем у изоалканов соответствующей молекулярной массы, не согласуется с таким выводом. Применение хроматографии и комплексообразования с карбамидом позволило провести систематическое исследование твердых углеводородов и получить [c.196]

    Элементарный состав парафина в большинстве случаев приводит к формуле С Н2п+2) однако многим авторам удавалось в результате тщательной фракционированной кристаллизации получить парафин, элементарный анализ которого приводит к формуле, более бедной водородом. Величина х в формуле СпЩп+х окажется меньше 2, откуда следует, что в парафине могут находиться и неметановые углеводороды. Современные методы исследования, применение хроматографии и комплексообразования с мочевиной позволили доказать, что в сыром парафине некоторых нефтей содержатся вещества, заключающие нафтеновое и даже ароматическое ядро, причем в некоторых случаях это содержание вовсе не так мало, как это предполагалось ранее. Особенно много подобных циклических парафинов находится в петролатуме, т. е. в осадке, полученном вымораживанием высших фракций нафтеновых нефтей. По-видимому, такие ненормальные парафины свойственны преимущественно малопревращенным нефтям нафтенового типа. [c.55]

    Таким образом, замена инертного носителя, применяемого в осадоч-но-хроматографических колонках, на носитель. Сорбирующий образующиеся в колонке растворимые в воде соединения, а также, в большинстве случаев, и комплексообразующий агент, дает возможность значительно расширить применение комплексообразования в хроматографии. [c.359]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Более точно можно определить групповой состав керосино-га-зойлевы.х фракций комбинированным методо.м, основанным на применении жндкостно-адсорбцно[птой хроматографии, комплексообразования, четкой ректификации и спектрального анализа. Комбинн-[ ованный метод анализа керосино-газойлевых фракций позволяет определить детализированный групповой состав керосино-газон-левых фракции. На рис. 39 приводится схема этого анализа [c.90]


    Для более глубокой дифференциации высокомолекулярных углеводородов исследователи применили комплексную методику, позволяющую разделять сложные углеводородные смеси по типам структур молекул и получать более простые смеси, содержащие группы углеводородов, более близкие по строению и молекулярным весам. Сначала дистиллятные масляные фракции подвергали депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно исследуемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировали, а затем депарафинизировали. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась дальнейшей дифференциации при помощи двух методов адсорбционной хроматографии и комплексообразования с карбамидом. Хроматография на силикагеле позволяет разделить углеводороды на три основные структурные группы (парафиново-циклопарафиновая и две фракции ароматических углеводородов). Комплексообразование с карбамидом позволяет выделить из смеси предельных структур углеводороды с достаточно длинными парафиновыми цепочками, способные образовать с карбамидом кристаллические комплексы. Твердые парафины, выделившиеся из петролатума в первой стадии, т. е. при его депарафинизации избирательно действующим растворителем, и составляющие около 2/з всего петролатума, далее не исследовались. [c.198]

    Успешное развитие аналитической экспрессной системы контроля качества нефтяных и водных продуктов основано на методах авто-детекторной хемосорбционной индикаторно-жидкостной хроматографии. Сущность этих методов заключается в применении индикаторных сорбентов, обеспечивающих хроматографическое разделение анализируемых продуктов и детектирование образующихся зон адсорбции определяемых компонентов и примесей в индикаторных трубках. Производство индикаторных сорбентов было налажено на Щелковском химкомбинате, заводе Диатомит и Сорбполимере . Индикаторные сорбенты получают на основе ионного обмена и хемо-сорбционного комплексообразования в водных растворах индикаторов с последующей дегидратацией конечной продукции. В процессе ионного обмена в качестве модификаторов используются соли различных металлов, среди которых получили применение кобальт и серебро, обеспечивающие голубую, фиолетовую и розовую окраску индикаторных сорбентов. Для получения индикаторных сорбентов берут фракцию с крупностью 0,05-0,15 мм при соотношении сорбент модификатор — I 30, температуре 50-70°С, продолжительности модификации 30-50 мин. Дегидратацию проводят при 110 5 С в течение [c.121]

    Применяемые для разделения веществ, можно подразделить на три категории неполярные, например сквалан (2,6,10,18,19,23-гексаметилтетракозан) умеренно полярные, например динонилфталат, и сильно полярные, как диметилформамид или эфир р,Р -бис-(пропионитрил). Силы взаимодействия, возникающие между пробой и жидкой фазой, определяют относительную летучесть анализируемого вещества и достижимую степень разделения. Неполярные вещества распределяются в неполярной жидкой фазе в соответствии со значениями температур кипения [преобладание первого члена в уравнении (7.3.14)]. Полярные вещества быстрее элюируются неполярными жидкими фазами, чем неполярные с аналогичной температурой кипения, так как летучесть их возрастает в неполярной жидкой фазе вследствие диссоциации ассоциированных молекул. С увеличением полярности жидкой фазы в равной мере происходит увеличение времени удерживания полярных соединений. Аналогичное действие оказывают образование водородных связей и комплексообразование (об этом свидетельствуют экспериментальные данные [28]). Некоторые жидкие фазы, применяемые в хроматографии, с данными максимальных рабочих температур и областями применения приведены в табл. 7.10. [c.366]

    Применение ионов-замедлителей в процессе разделения РЗЭ методом ионообменной хроматографии существенно ускоряет разделение благодаря возможности проводить процесс при более высоком pH, не боясь возможности образования комплексов всеми РЗЭ. Это, в свою очередь, в значительной степени повышает концентрацию РЗЭ в элюатах и в то же время усиливает четкость разделения [981. В качестве замедлителей используют ионы металлов, обладающие способностью давать прочные комплексные соединения с полиаминоуксусными кислотами. Как правило, применяют в качестве замедлителей ионы, обладающие большей склонностью к комплексообразованию, чем РЗЭ. Однако из-за того, что зависимость степени закомплексованности от pH у РЗЭ и ионов-замедлителей разная, а также разная прочность связи катионов со смолой, в ряде случаев могут быть использованы в роли замедлителей элементы с меньшей константой устойчивости, чем у РЗЭ. Примером может служить применение 2x1 и Си + при разделении элементов иттриевой подгруппы, наиболее часто использующихся на практике [99]. В табл. 32 показана устойчивость комплексных соединений некоторых ионов-замедлителей и РЗЭ с ЭДТА. [c.123]

    Все серосодержащие соединения нефти, кроме низших меркаптанов, химически нейтральны и очень близки по свойствам к аренам нефти. Существующие лабораторные и промышленные методы разделения, такие, как сульфйрование, адсорбционная хроматография, экстракция, разделение с помощью комплексообразования, ректификация и другие, малоэффективны и неприемлемы для промышленного применения. Поэтому для удаления серосодержащих соединений из нефтяных фракций используют гидрирование. Этот процесс достаточно полно изложен в гл. 14. [c.284]

    Маскирующие реагенты часто используют в методах разделения и концентрирования. Применение реактивов с широким диапазоном действия в экстракционных методах, таких, как оксин, дитизон, диэтилдитиокарбамат, неизбежно связано с использованием маскирующих средств, при помощи которых предотвращается экстракция мешающих ионов. Экстракцию Си + диэтилдитиокар-баматом можно провести в присутствии Ni + и РЬ +, которые также экртрагируются реактивом, если предварительно они маскируются при помощи ЭДТА, образующим менее устойчивые комплексы с u2 чем используемый реактив. В ионообменной хроматографии комплексообразование является широко используемым средством для изменения заряда иона, а следовательно, и для создания возможности участия в ионном обмене на ионитах определенного типа. Так, Ре " под действием разбавленной НР превращается в анионный комплекс РеРе , который можно легко отделить от других катионов, таких, как Ад+, Мп +, РЬ " [c.426]

    Разделение и анализ жирных кислот с применением газо-жидкостной, адсорбционной и тонкослойной хроматографии, комплексообразования с карбамидом и ряда других методов, как правило, прош,е и эффективнее, если кислоты переведены в их производные — сложные эфиры. Последние, в отличие от кислот, не обладают способностью димеризоваться, в меньшей степени необратимо адсорбируются на носителях и сорбентах или удерживаются- жидкими фазами, более летучи. Наличие в молекуле сложного эфира жирной кислоты одной или нескольких гидроксильных групп вызывает дополнительные трудности при разделении — усиливается реакционная способность и адсорбируемость (в том числе необратимая), на хроматограммах появляются несимметричные пики. Уменьшить активность гидроксильной группы можно ее блокированием — получением, например, ацетильных, трифторуксусных и триметилсилиловых производных. Эти вещества более летучи, менее полярны и термически устойчивы. [c.163]

    Поскольку обработка и интерпретация далных является столь жизненно необходимыми для всех видов химических экспериментов, в главе 2 детально описывается, как выразить точность и правильность аналитических результатов и как оценить погрешности в измерениях с цриложением строгих математических и статистических концепций к тому же этот материал обеспечивает прочные основы для обсуждения хроматографических разделений в более поздних главах. В главе 3 обсуждаются вопросы по Ведения раствор.енных веществ в водной среде и некоторые принципы химического равновесия, на которые опирается материал последующих разделов. Главы 4 и 5 охватывают кислотно-основные реакции в водных и неводных системах такой подход необходим для количественной оценки р астворимости осадков в различных растворителях и различных видов химических взаимодействий, возникающих в аналитических методах, которые основаны на комплексообразовании и экстракции. В главе 6 рассматривается теория и аналитическое применение реакций комплексообразования и основные положения использования этих общих представлений в таких аналитических методах, как прямая потенциометрия, кулонометрическое титрование, полярография и хроматография. Аналитические методы, основанные на образовании осадков, обсуждаются в главах 7 и 8. [c.19]

    Из сказанного выше следует, что любой метод, позволяющий определить изоалектрическую точку, одновременно может быть применен для определения соответствующих констант комплексообразования. Изоэлектрическую точку, например, можно найти методом бумажной хроматографии, для чего требуются лишь очень малые количества вещества. [c.42]

    В лаборатории развивались физические методы исследования — ЭПР, ЯМР, мёссбауэровская спектроскопия. Метод ЭПР щироко используют для изучения комплексообразования различных элементов в растворах. В одной из групп разрабатываются электрохимические методы — ионометрия, высокочастотная кон-дуктометрия, электродиализ. В лаборатории проводили работы по синтезу и применению новых органических реагентов предложены пикрамин е, сульфоалл-тиокс и др. Для разделения благородных и других металлов используют методы тонкослойной хроматографии и электрофореза на бумаге. [c.200]

    В 1955 г. появилась обобщающая статья [511, в которой дан краткий обзор американских работ по выделению сернистых соединений рефтей и их идентификации. В статье приведено краткое описание 1 1етодов, применяемых в Американском нефтяном институте нри разработке исследовательской проблемы 48А, т. е. проблемы сернистых соединений пефти. Наиболее широко применялись методы вакуумной перегонки в сочетании с хроматографией на специальным образом приготовленной окиси алюминия. Результаты, полученные при Еспользовапии метода термической диффузии для концентрации сернистых соединений нефти, хорошо согласуются с данными хроматографического разделения па окиси алюминия. Из химических мето- ов, упоминается использование реакции комплексообразования. В, концентратах сернистых соединений (150—220 С) тексасской нефти, полученных в результате применения одного или нескольких методов, были идентифицированы при помощи инфракрасной спектроскопии и масс-спектроскопии 43 сернистых соединения (40 надежно, а 3 предположительно). Выделенные из нефти сернистые соединения чувствительны к металлам (особенно к меди и ртути) и к повышенным температурам. [c.368]

    Решение проблемы разделения лантано11дов тесно связано с развитием экстракционной хроматографии как метода разделе ния неорганических ионов. Из-за близости химических свойств лантаноидов их разделение является сложной аналитической задачей. Возможность решения этой задачи может служить рите-)ием эффективности любого нового метода разделения ионов. Тредварительные исследования показали, что экстракционная хроматография позволяет с успехом разделять лантаноиды только после этого метод начал широко применяться для их разделения [1, 2]. Решение проблемы разделения лантаноидов имело большое значение и для развития самой экстракционной хроматографии, так как позволило выяснить большинство важных практических и теоретических особенностей этого метода. Однако и химия лантаноидов многим обязана методу экстракционной хроматографии. Так, при изучении экстракционно-хроматографического разделения лантаноидов была обнаружена важная закономерность, описывающая зависимость некоторых свойств ионов ла Нта-ноидов, и актиноидов от их атомного номера эта закономерность сначала была названа регулярностью [3]. Тем не менее до сих пор не исследованы многие другие потенциальные возможности применения экстракционной хроматографии для изучения химии лантаноидов, особенно кинетики комплексообразования и экстракции. [c.294]

    Расположение (А) позволяет координировать катионы, ионный радиус которых превышает приблизительно 0,06 нм, тогда как при расположении (В) нижним пределом является примерно 0,08 нм. Эффективность комплексообразования в случае ациклических полиолов зависит от доступности конформеров с расположением гидроксильных групп типа (В) и наиболее высока для альдитов, содержащих /ссмло-конфигурацию, например для ксилита и сорбита (от С-2 до С-4) [377, 378]. Таким образом, комплексообразование в случае ксилита включает вторичные гидроксильные группы и конформационный переход серп-зигзаг (166). Такие взаимодействия удобно наблюдать м-етодом спектроскопии ЯМР с использованием лантанидных парамагнитных сдвигающих реагентов [например, солей Ей(III), Рг(1П) или Yb(III)] в [377—380]. Практическое применение комплексообразований включает разделение и идентификацию полиолов методом электрофореза в присутствии солей металлов и колоночной хроматографии на катионообменных смолах [381], а также определение конфигурации диолов (обычно вицинальных) путем хироптических измерений. К числу последних относятся применение кругового дихроизма к хорошо известным медно-аммиачным растворам гликолей [c.122]

    Примененне газовой хроматографии для изучения комплексообразования [c.240]

    В последние годы метод аффинной хроматографии благодаря своей высокой эффективности стал одним из ведущих методов выделения и очистки природных соединений. Его применение, однако, не ограничивается только выделением соединений, находящихся— часто в очень небольших концентрациях — в смеси с близкими к ним но свойствам веществами. Специфическое комплексооб-разованне позволяет применять этот метод и для отделения биологически активных молекул от денатурированных, например после модифицирования белка, а также и для исследования самого процесса комплексообразования, определения констант устойчивости комплексов и установления различных факторов, оказывающих влияние на этот процесс. [c.5]


Смотреть страницы где упоминается термин Комплексообразование, применение нри хроматографии: [c.205]    [c.106]    [c.206]    [c.160]    [c.599]    [c.213]    [c.182]    [c.109]    [c.17]    [c.47]    [c.55]    [c.59]   
Руководство по газовой хроматографии (1969) -- [ c.460 , c.463 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне

Хроматография применение



© 2025 chem21.info Реклама на сайте