Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

В аналитической практике

    Это несколько ограничивает применение электролиза в аналитической практике. В электрогравиметрическом анализе чаще всего [c.421]

    Количественный анализ атомно-абсорбционным методом выполняется с помощью градуировочных графиков, построенных по стандартным растворам. Чаще всего стандартные растворы готовят из солей соответствующих металлов. При этом для снижения роли матричных эффектов щироко используют такие приемы, как разбавление раствора, уравнивание концентрации основного компонента в стандартных растворах и пробах, введение различных специальных добавок, оптимизация аппаратурных условий и др. Очень часто, особенно в сочетании с электротермическими атомизаторами, в аналитической практике применяют метод добавок. [c.158]


    Буферные смеси широко применяют в аналитической практике как в качественном, так и в количественном анализе тогда, когда проведение той или иной аналитической операции требует поддержания определенной величины pH раствора. Их применяют также и при экспериментальном определении pH. [c.282]

    В аналитической практике широко используют следующие метрологические и аналитические характеристики правильность, воспроизводимость (сходимость), нижняя граница определяемых содержаний, коэффициент чувствительности, предел обнаружения или определения (см. гл. 2). [c.184]

    До введения в аналитическую практику окислительно-восстановительных индикаторов титрование часто проводили с внешними индикаторами. Например, Ре2+ титровали бихроматом с внешним индикатором Кз[Ре(СК)б]. [c.369]

    Сульфиды имеют характерную окраску, например uS, NiS, PbS — черные, MnS — телесного цвета, ZnS — белый. Различие в окраске и растворимости сульфидов в разных средах используется в аналитической практике для обнаружения и разделения катионов. [c.325]

    Как следует из сказанного выше, в аналитической практике всегда приходится считаться с растворяющим действием кислот, так как увеличение концентрации водородных ионов приводит к увеличению растворимости осадков. [c.94]

    В заключение рассмотрим несколько индикаторов, наиболее часто применяемых в аналитической практике. [c.244]

    Методы титрования в неводных растворах находят широкое применение в аналитической практике. Их используют для анализа разнообразных неорганических и органических веществ и для дифференцированного титрования многокомпонентных смесей солей, кислот и оснований. Одно из важнейших преимуществ методов неводного титровани г — возможность определять нерастворимые в воде соединения, а также вещества, разлагаемые водоп ил образующие в водных растворах стойкие Е1ерасслаивающиеся амульсии. Титрование неводных растворов может выполняться визуальным методом с применением индикаторов. потенциометрическим, кондуктометрическим. амиерометрическим и другими физикохимическими методами. [c.409]

    Последняя реакция используется в аналитической практике как качественная реакция на соединения марганца. [c.575]

    В целях расширения аналитических возможностей метода полярографии широко используют различные модификации поляризующего индикаторный электрод сигнала напряжения. В одной из них линейно меняющееся напряжение Е х модулировано переменной составляющей имеющей незначительную амплитуду (не выше 60 мВ в случае реакции с одноэлектронным переходом). Форма переменного напряжения может быть различной— синусоидальной, прямоугольной, трапецевидной, треугольной, Частота переменного напряжения может меняться в широких пределах — Гц до кГц. Наличие переменной составляющей у линейно меняющегося поляризующего напряжения приво" дит к существенному изменению токовой характеристики и аналитических возможностей полярографического метода. Здесь мы рассмотрим только переменнотоковую полярографию, в которой постоянная составляющая модулирована синусоидальным напряжением, поскольку отечественные серийные приборы реализуют возможность использования в аналитической практике в основном именно этой разновидности метода полярографии с наложением периодически меняющегося напряжения. [c.281]


    В аналитической практике для количественного определения Fe " используется реакция [c.587]

    Желтая кровяная соль широко используется в аналитической практике для обнаружения ионов Fe "  [c.588]

    В последние годы возрос интерес к надкритическим флюидам как растворителям в различных технических процессах и в аналитической практике. Об этом свидетельствует прошедший впервые в мире в ФРГ в 1978 г. симпозиум по надкритическим флюидам как селективным растворителям. Обсуждается и участие надкритических растворителей в переносе веществ в природе. [c.3]

    Аналогичные проблемы часто возникают в аналитической практике при попытках численного обоснования хода осаждения, условий маскировки и т. п. Задачи типа 1 и 2 решены ранее [1 ], задача типа 3 — в работе [2]. Ниже описывается новый метод решения задачи типа 3, более эффективный, чем использованный ранее. [c.177]

    Величину lg(/o//) в (1.17) характеризующую поглощательную способность вещества в растворе, называют оптической плотностью. В аналитической практике, стремясь подчеркнуть сущность процесса, лежащего в основе фотометрического определения, а именно поглощение квантов электромагнитного излучения оптического диапазона аналитической формой, эту величину называют поглощением или светопоглощением и обозначают буквой А. Для раствора поглощающего вещества при постоянных концентрации и толщине поглощающего слоя А зависит от длины волны. [c.56]

    Большее распространение в аналитической практике полу- [c.104]

    Непосредственное определение этих веществ в неизменном виде представляет большие трудности ввиду сложности состава и типа их связи с органической массой угля. Поэтому в аналитической практике принято судить о содержании минеральных веществ в угле (М) косвенно по количеству золы А), которая остается после сгорания пробы угля при свободном доступе воздуха. [c.96]

    Как прямая кулонометрия, так и кулонометрическое титрование находят широкое применение в аналитической практике определения неорганических веществ. Подробная сводка возможных объектов анализа приведена в руководстве Агасяна и Николаева. Возможно определение элементов всех групп периодической системы Менделеева. Кулонометрическое титрование используют при анализе органических соединений. Для анализа газов также служит кулонометрия и на ее основе разработаны многочисленные автоматические газоанализаторы па водород, кислород, воду, оксиды углерода, азота и серы, галогены и их производные. [c.252]

    Импортная аналитическая техника интенсивно используется в аналитической практике российских предприятий, функционируя как инструментальное обеспечение ГОСТ Р. Это закономерный и положительный процесс, так как национальная промышленность еще долго будет не в состоянии обеспечить потребности отрасли в автоматических анализаторах мирового уровня. Отдельные успехи отечественной промышленности выглядят скорее как исключение, чем правило. Откажись мы сейчас от импортного оборудования под предлогом его несоответствия ГОСТ Р, аналитический контроль нефти и нефтепродуктов будет отброшен по техническому уровню далеко в прошлое. Если касается бани-термостата или другого общелабораторного оборудования, то особых методических проблем не существует. Иное положение со специализированными приборами и аппаратами, являющимися слепком строго заданной измерительной технологии. Здесь различия могут быть существенными. Таким образом, проблема заключается не в импортной технике, а в отсутствии гармонизации между национальными и международными системами измерений. Это задача органов Госстандарта РФ, которые проводят аттестацию импортных средств измерений с целью их включения в Государственный реестр средств измерений, допущенных к применению в России. К сожалению, этот процесс часто излишне формализован. Описание типа средства измерений не дает необходимых сведений о возможном [c.239]

    Водородный электрод не очень удобен в аналитической практике, но важен в термодинамическом отношении, поскольку он служит первичным стандартом, относительно которого обычно определяются потенциалы других электродов. [c.234]

    При постоянной толщине поглощающего слоя градуировочный график, построенный в координатах А—с, представляет собой прямую, проходящую через нулевую точку. Так как подавляющее большинство свободных атомов находится в основном состоянии, то значения атомных коэффициентов абсорбции для элементов очень высоки и достигают и-10 , что примерно на три порядка выше молярных коэффициентов поглощения светового излучения, полученных для растворов (е = п-10 ). Это в известной степени обусловливает низкие абсолютные и относительные пределы обнаружения элементов атомно-абсорбционным методом первые составляют 10 —Ю г, вторые —10 —10 %. Для атомизации вещества в атомно-абсорбционной спектрофотометрни используют пламена различных типов и электротермические атомизаторы. Последние основаны на получении поглощающего слоя свободных атомов элемента путем импульсного термического испарения вещества кювета Львова, графитовый трубчатый атомизатор, лазерный испаритель и др. Пламенная атомизация вещества получила большое распространение в аналитической практике, так как она обеспечивает достаточно низкие пределы обнаружения элементов (10 — 10 %) и хорошую воспроизводимость результатов анализа (1—2%) при достаточно высокой скорости определений и небольшой трудоемкости. Для наиболее доступных низкотемпературных пламен число элементов, определяемых методом атомно-абсорбционной спектрофотометрни, значительно больше, чем [c.48]


    Если через электрохимическую ячейку, собранную так же, как описано выше, пропускать ток постоянной силы, стабилизировав его каким-либо внешним устройством (описание см. ниже), потенциал рабочего электрода начнет весьма быстро смещаться в зависимости от его полярности в более положительную (в более отрицательную) сторону до тех пор, пока не достигнет значения, при котором возможно протекание той или иной электродной реакции. В аналитической практике состав раствора подбирают, чтобы эта реакция отвечала электролизу анализируемого вещества. [c.255]

    Уравнение (5.13) позволяет рассчитывать среднюю силу тока за время жизни каждой капли, если известно значение коэффициента диффузии. К сожалению, значение О зависит от изменения свойств раствора (концентрации фона, наличия поверхностно-активных веществ и т. д.). В связи с этим в аналитической практике уравнение (5.13) применения не имеет и важно лишь как теоретическое подтверждение линейной зависимости между силой предельного диффузионного тока и концентрацией вещества в растворе. [c.275]

    Но соосаждение может играть также и весьма положительную роль при анализе. В аналитической практике нередко концентрация (шределяемого компонента в растворе настолько мала, что осаждение его невозможно. Тогда проводят соосаждение определяемого. чикро компонент а (т. е. составной части, присутствующей в очень малой концентрации) с каким-либо подходящим коллектором (носителем). [c.109]

    В книге рассматриваются теоретические вопросы растворения веществ в надкритических газах и жидкостях и приводятся данные, характеризующие их растворяющую способность по отношению к различным классам веществ в широком диапазоне температур и давлений. Растворяющую способность газы и пары многих жидкостей приобретают при их сжатии при надкритических темгаературах до некоторых давлений, неодинаковых для различных флюидов и веществ. Растворяющими и селективными свойствами надкритических газов и жидкостей можно управлять, меняя температуру и степень сжатия их. С этой характерной особенностью газовых растворителей связана возможность их мспользовяния для разделения смесей веществ. В книге дано несколько примеров такого разделения в аналитической практике и технологических процессах. Выделение отдельных компонентов смеси из газового раствора осуществляется при ступенчатом снижении его давления или при повышении его температуры..  [c.3]

    В аналитической практике используются иониты, при контакте с которыми вода в течение суток не должна менять своего значения pH. Поэтому но окончании процесса сульфирования ионит должен быть полностью отмыт от свободной серной кислоты, находящейся в его порах. Длительный контакт ионита с крепким раствором серной кислоты может привести к образованию сульфо-нов (рекомбинации сульфогрупн), что влечет за собой снижение обменной емкости ионита. [c.372]

    Таблица содержит наиболее распространенные в аналитической практике линии. В первой графе приведены элементы пли свободные радикалы, испускающие этн линии (или полосы), во второй — дли1[ы волн линий в ммк, в третьей — интенсивности линий ггри содержании определяемого элемента 1 у1мл-. интенсивность аналитической линии калня при указанной концентрации принята за 100. [c.720]

    Наиболее широкое распространение в аналитической практике получили пламенные фотометры с интерференционными светофильтрами. Принципиальная оптическая схема такого фотометра представлена на рис. 1.14. Анализируемый раствор распыляется сжатым воздухом в распылителе 2 и подается в пламя 5 в виде аэрозоля. Крупные капли аэрозоля конденсируются на стенках распылителя и удаляются через слив 3. Устойчивый и мелкодисперсный аэрозоль увлекается в пламя, предварительно смешиваясь с горючим газом. Суммарное излучение пламени, прямое и отраженное рефлектором 4 через диафрагму 6 и конденсаторы 7, 8 попадает на интерференционный светофильтр 9, а выделенное им излучение собирается конденсором 10 в сходящийся пучок и, пройдя защитное стекло И, попадает на катод фотоэлемента или фотоумножителя 12. Электрический сигнал после усилителя 13 отклоняет стрелку микроамперметра 14. В блоке питания 15 находятся автокомпенсацион-ные стабилизаторы и преобразователь напряжения. [c.39]

    Наряду с колоночной жидкосгной хроматофафией, ддя разделения суперэкотоксикантов в аналитической практике довольно частно применяют тонкослойную хроматофафию (ТСХ) на оксиде алюминия и силикагелях 118 , Этот метод дает вполне удовлетворительные результаты при анализе биологических объектов, в которых содержание определяемых компонентов относительно высокое. В частности, ТСХ на пластинках "Силуфол применяется дня определения афлатоксинов в зерновых, зернобобовых и молочных продуктах [ol]. Метод позволяет надежно обнаружить афлатоксины В и Gi на уровне 1-2 мкг/кг, а афлатоксины Вг Сг и М - на уровне 0,5-1 мкг/кг, [c.224]

    Определение молекулярной массы нефтепродуктов, как и индивидуальных веществ, проводится различными методами, что объясняется разнообразием свойств эгих продуктов. Очень часто способ, пригодный для определения молекулярной массы одних продуктов, совершенно непригоден для других, В аналитической практике применяются к р и о с к о и I ч е с к и й, эбуллиоскопический и, реже осмометричсский методы. Кроме того, существуют приблизительные расчетные методы. [c.47]

    Хлорная кислота — наиболее сильная и стабильная из всех кис-лородсодержащих кислот хлора. Она находит широкое применение в аналитической практике, в гальваностегии, фотографии, а также как катализатор реакции этерификации, например, при ацетили-ровании целлюлозы. Хлорная кислота и перхлораты могут применяться как растворители органических веществ. [c.191]

    Исследование состава, свойств и молекулярных весов смол и асфальтенов, выделенных из тяжелых остаточных продуктов высокотемпературной и окислительной переработки нефти (крекинг-остатки, окисленный и остаточный битум, гудрон и др.), показало, что они заметно отличаются от первичных смол и асфальтенов, выделенных из сырых нефтей [31—35]. Смолы, выделенные из отбен-зипенной и откеросиненной нефти, из 50%-ного мазута, гудрона, крекинг-остатка, окисленного битума, характеризовались более низкими молекулярными весами, чем смола, выделенная из сырой нефти. То же самое относится п к молекулярным весам асфальтенов, выделенных из тяжелых остатков переработки нефти. Причем молекулярные веса смол и асфальтенов, выделенных из тяжелых нефтяных остатков, тем ниже, по сравнению с молекулярными весами первичных смол и асфальтенов, выделенных из сырых нефтей, чем более глубокой химической переработке нефть подвергалась. Несмотря на более низкие значения молекулярных весов вторичных, т. е. претерпевших химические изменения, смол и асфальтенов, по сравнению с первичными, растворимость их в органических растворителях ухудшается. Так, например, первичные асфальтены растворимы в циклогексапе, а асфальтены, выделенные из тяжелых остатков высокотемпературной переработки нефти, наоборот, нерастворимы в циклогексане. Это применяется в аналитической практике для разделения первичных и вторичных нефтяных асфальтенов. [c.84]

    Применение спектральных методов анализа является весьма эффективным средством изучения структуры ароматических соединений [59, с. 228], и онй пи-ирежнему используются в аналитической практике. Однако эти методы особенно эффективны при анализе сравнительно простых, содержащих небольшое число компонентов, смесей. Определение проводится в весьма разбавленных растворах, требуется сложная подготовка образцов в старых конструкциях приборов значительное время занимает анализ спектров. [c.135]

    Дннитрофторбензол реагент Сенгера) — алкилирующий реагент, который нашел широкое применение в аналитической практике (при определении последовательности аминокислот, образующих белковый полимер). [c.49]

    В аналитической практике отечественных лабораторий наиболее широко эффект Шпольского используется для идентификации и количественного определения бенз(а)пирена [18]. Это относится и к профамме фонового мониторинга природных объектов. Для целей мониторинга ПАУ создан банк спектров при 77 К, который опубликован в виде атласа 27 . На основе проведенных исследований рафаботаны высокочувствительные и селективные методы определения ПАУ и их гфоизводных в многокомпонентных природных и техногенных системах в воздухе, почве, растениях, атмосферных осадках, природных и сточных водах, донных отложениях, горных породах, минералах, нефтях, высокотемпературных пиролизатах, отработанных газах автомобильных даигателей, саже и т д. Предел обнаружения в однокомпонентных растворах для разных соединений находится в диапазоне от 0,01 до 1 нг/мл. Дл[я огфеделения ПАУ в последнее время применяют метод единого стандарта, который базируется на сравнении спектров люминесценции анализируемых рас- [c.252]

    В аналитической практике и технологии для выделения ряда элементов весьма перспективными являются методы, основанные на осаждении с подходящими носителями. Наилучшие результаты дает осаждение в варианте, который называется мегодом возникающих реагентов (МВР), при котором реагент-осадитель не вводится в раствор, а генерируется в нем в результате химической реакщ1и. В таком варианте образование осадков идет равномд)но во всем объеме раствора, что должно приводить к повышению захвата извлекаемого компонента. [c.95]

    К сожалению, несмотря на ряд преимуществ — высокий сили-лирующий потенциал, нейтральные силилирующие условия, сравнительно низкая цена, БСА в препаративной органической химии используется реже, чем в аналитической практике. [c.11]

    В аналитической практике наиболее длительным этапом при определении металлов в растениях является подготовка пробы анализируемого объекта, которая проводится методом мокрого озоле-ния , т. е. окисления органической части минеральными кислотами при нагревании в течение 5-8 часов. Недостатками указанного способа являются продолжительность анализа и трудоемкость. [c.130]

    Изучение тонкой структуры коксов цроводилось на рентгеновском дифрактометре ДРОН-3,0 с использованием щелей Соллера и Си излучения,отфильтрованного никелевым фильт ром. Для съемки использовался кокс с размером частиц менее 0,1 мм.Расчет цроводился по известным формулам. Оцределение количества графити-рованной фазы проводилось по методу добавок,который часто используется в аналитической практике. [c.106]

    Перманганат калия, или марганцевокислый калий (КМПО4), сильный окислитель. Он широко применяется в реакциях органического синтеза, в производстве жирных и ароматических кислот, для отбеливания тканей, протравы дерева, как дезинфицирующее средство в медицине и в быту, в аналитической практике, в фотографии и т. п. [c.203]

    Такая модель позволяет с достаточной точностью описывать градуировочные кривые в значительно более широких интерва. лах варьирования как содержания определяемого элемента, так и состава анализируемых проб, чем в способе, основанном на использовании адекватных образцов сравнения. Практическое применение аппроксимации градуировочных кривых выражениями типа (3.14) стало возможным благодаря широкому внед< рению ЭВМ в аналитическую практику. [c.58]

    Часто возникает вопрос если сила тока электрохимической реакции контролируется переносом электрона, то почему в этом случае возникает предельный диффузионный ток Это происходит потому, что для весьма разбавленных растворов, с которыми имеют дело в аналитической практике, при достаточно большом отклонении потенциала от равновесного все же реализуются условия, когда число вступающих в реакцию электродноактив-пых частиц делается соизмеримым с таковым в приэлектродной области, в результате чего происходит смена механизма контроля. Можио сказать, что в этом случае нижняя ветвь полярографической волны задается переносом электрона, а верхняя — подачей электродноактивных частиц на поверхность электрода. [c.277]

    Имеется один практически важный случай, когда конвективный перенос играет существенную роль в аналитической практике, а именно в вольтамперометрии. Теоретически показано, что постоянство толщины диффузионного слоя, и, следовательно, постоянство силы диффузионного тока может быть достигнуто также при использовании так называемого дискового электрода, который представляет собой металлический диск, вращающийся в растворе. При вращении жидкость, соприкасающаяся с диском, отбрасывается центробежной силой от центра к периферии, так что формируется поток вдоль него, питаемый подачей жидкости снизу. Этот поток задает толщину слоя Прандля, в котором происходит переход от неподвижной жидкости в объеме раствора к движущейся вместе с диском на его поверхности. Внутри слоя формируется и им ограничивается диффузионный предельный слой. Выражение для силы тока на таком электроде имеет вид [c.278]

    Конструкция переменнотокового полярографа такова, что в цепь регистрирующего прибора включен трансформатор, вследствие чего постоянная составляющая не регистрируется и в цепи протекает лищь сумма токов. А именно тока ДЭС — от доза-ряда— подразряда конденсатора (ДЭС) и фарадеевского — от восстановления — окисления электродноактивного вещества, причем в аналитической практике фарадеевская составляющая значительно больше двойнослойной, так что именно она определяет вид зависимости силы тока от потенциала. [c.282]


Смотреть страницы где упоминается термин В аналитической практике: [c.97]    [c.617]    [c.92]    [c.345]    [c.176]   
Смотреть главы в:

Роль сжатых газов как растворителей -> В аналитической практике




ПОИСК





Смотрите так же термины и статьи:

Ионообменные смолы и их использование в аналитической практике

Метод вычитания в аналитической практике идентификации загрязнений воздуха

Отдельные примеры использования метода в аналитической практике

Применение потенциостатического метода в аналитической практике

Применение сжатых газов для разделения смесей термически неустойчивых веществ в аналитической практике

Процессы цементации в аналитической практике

Растворители органические в объемно-аналитической практик



© 2025 chem21.info Реклама на сайте