Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электростатический генератор Ван-де-Граафа

    Практическое применение для активационного анализа нашли три типа электронных ускорителей электростатические ускорители, линейные ускорители и бетатроны. В электростатических ускорителях используется метод прямого ускорения электронов в постоянном электрическом поле. Высокое напряжение на ускорительную трубку обычно подается от электростатического генератора Ван-де-Граафа. С помощью электростатического ускорителя электроны ускоряются до энергий в несколько мегаэлектронвольт (3—5 Мэе). Предел энергии электронов, получаемых с помощью электростатического ускорителя, кладет утечка заряда по воздуху и пробой изоляции. [c.79]


    Электростатический генератор Ван-де-Граафа Непрерывный 10-2 2 8, 24 [c.31]

    Получение радиоактивных изотопов с помощью ускорителей частиц. Многие радиоактивные изотопы обычно получают в реакторе. Но есть различные атомные ядра, которые превращаются в радиоактивные изотопы не с помощью нейтронов, а только с помощью протонов, дейтронов или а-частиц. Так как эти частицы электрически заряженные, то они могут быть ускорены в электрическом поле. Такие методы использовались раньше, когда в распоряжении ученых еще не было реакторов (например, применяли каскадный генератор Кокрофта и Уолтона). Другими машинами, используемыми для этой цели, являются циклотрон, электростатический генератор Ван-де-Граафа и линейный ускоритель. Однако получение радиоактивных изотопов с помощью каких-либо устройств такого типа дороже, чем с помощью атомного реактора. [c.34]

    Для сравнения рассмотрим электростатический генератор Ван-де-Граафа, который производит электронное излучение с энергией 1,5 Мэе и мощностью 2,5 кет. Так как [c.51]

    ЭЛЕКТРОСТАТИЧЕСКИЙ ГЕНЕРАТОР ВАН-ДЕ-ГРААФА [c.72]

Рис. 2. 7. Электростатический генератор Ван-де-Граафа (схема) Рис. 2. 7. <a href="/info/1265803">Электростатический генератор</a> Ван-де-Граафа (схема)
    Электростатический генератор Ван де Граафа с ленточным транспортером зарядов может быть использован для ускорения электронов или ионов [16]. [c.13]

    Электростатический генератор Ван де Граафа. Применение электростатической машины для создания высокого напряжения, ускоряющего положительные ионы, впервые было предложено и осуществлено в 1929 г. Ван де Граафом из Массачусетского технологического института. В генераторе Ван де Граафа высокое напряжение создается и поддерживается на проводящей сфере посредством непрерывной передачи ей статического заряда от движущейся ленты. Принцип работы генератора иллюстрируется рис. 76. Изготовленная из шелка, резины, бумаги или некоторых других подходящих изоляционных материалов лента приводится в движение мотором и системой роликов. Она проходит сквозь щель АВ, соединенную с источником постоянного высокого напряжения (от 10 до 30 ве), и устанавливается таким образом, чтобы на острие в точке В поддерживался непрерывный разряд. Таким образом, положительные (или отрицательные) заряды стекают с острия иглы В на ленту, которая их уносит внутрь изолированной металлической сферы там в свою очередь имеется другое острие или острозубый гребень С, соединенный со сферой и снимающий с ленты заряды, которые затем распределяются по поверхпости сферы. Сфера будет заряжаться до тех пор, пока потери поверхностного заряда из-за [c.350]


    Ускорители электронов (трубка прямого ускорения, энергия 1 МэВ электростатический генератор Ван-де-Граафа, 2 МэВ линейный ускоритель, 15 МэВ бататрон, 7 МэВ капаситрон 3 МэВ резонансный трансформатор 0,8 МэВ). [c.208]

    При промышленном использовании радиационных процессов облучение нефтяного сырья тепловыми нейтронами может вызвать трудности, связанные с наведенной или искусственной радиоактивностью. Эта важная сторона радиационных технологических процессов будет рассмотрена дальше. Обычные формы остаточной радиации сильно осложняют последующее эффективное использование получаемых продуктов. Для достижения максимальной эффективности поступающее излучение должно в минимальной степени поглощаться стенками реактора и в максимальной — перерабатываемым сырьем. Применительно к парофазным реакциям в системах высокого давления электромагнитное излучение удовлетворяет первому из этих требований, но не удовлетворяет второму. Для излучения в виде элементарных частиц справедливо обратное положение поглощение стенками аппаратуры настолько интенсивно, что возникает необходимость к разработке специальных конструкций. На рис. 1 представлена специальная установка, сконструированная в исследовательском центре фирмы Эссо , для облучения газов под высоким давлением (до 70 ат) непрерывно обегающим пучком электронов, получаемым в электростатическом генераторе Ван-де-Граафа. Особенностью этой камеры является устройство непрерывно охлаждаемого окошка, оборудованного специальной решеткой, отверстия которой расположены под критическими углами для достижения максимальной проникающей способности движущегося йлектронного пучка. [c.115]

Рис. 2. 9. Схематнче-скр й чертеж здания для электростатического генератора Ван-де-Граафа на 3 Л4.чв (размеры в метрах) Рис. 2. 9. Схематнче-скр й чертеж здания для <a href="/info/1265803">электростатического генератора</a> Ван-де-Граафа на 3 Л4.чв (размеры в метрах)
    Исторически развитие ускорителей было вызвано требованиями ядерной физики и высоковольтной техники. Для исследований по ядерной физике в интервале энергий 0,5—10 Мэе существенное значение имеют высокая стабильность высоковольтного напряжения и возможность приспособить ускоритель к решению специальных физических проблем. В настоящее время электростатический генератор Ван-де-Граафа обычно применяется для получения ускоренных элементарных частиц, например электронов, протонов или дейтронов с энергиями 2, 3, 4 или 6 Мэе. Могут также ускоряться частицы большей массы и с различными (не единичными) зарядами. В настоящее время возможно получение с помощью ускорителей на постоянном напряжении частиц более высокой энергии (так называемые тандем-ускорители). Оказывается возможным достичь удвоения или утроения энергии частиц без повышения высоковольтного напряжения на ускорителе. Для исследовательских целей все большее значение приобретают устройства, с помощью которых можно получать управляемые импульсы частиц однородной энергии. Так, например, с помощью пульсирующего ионного тока можно получать импульсы нейтронов, которые используются для возбуждения атомного реактора в подкритиче-ском режиме или для проведения различных измерений по нейтронной физике. Эти нейтроны могут также использоваться и для активационного анализа. [c.86]

    Примерно до 1930 г. под влиянием запросов радиотехники были разработаны основные технологические приемы промышленные средства откачки и измерения вакуума, обезгажпвание и отпайка стеклянных систем. Далее серьезные требования к вакуумной техники стала предъявлять физика, особенно с появлением ускорителей элементарных частиц, потребовавших разработки крупных разборных металлических вакуумных камер. В 1931 г. были построены электростатический генератор Ван де Граафа и первый циклотрон Лоуренса в США. В 40-х годах в г. Харькове был организован Укранискип е )пзико-техпическнй институт под руководством К. Д. Синельникова, где были разработаны крупные диффузионные насосы. Мощным стимулом развития вакуумной техники стала проблема использования [c.8]

    Полиизопрен в виде белого твердого продукта с молекулярным весом 200 000 получен при облучении на электростатическом генераторе Ван де Граафа при —100° С в течение 0,5 ч и мощности дозы 10 рад1ч. Из такого каучука могут быть получены вулкани-заты (ленты, трубы и т. п.) [87]. [c.124]


Смотреть страницы где упоминается термин Электростатический генератор Ван-де-Граафа: [c.104]    [c.261]    [c.5]    [c.120]    [c.66]    [c.52]   
Смотреть главы в:

Радиационная химия -> Электростатический генератор Ван-де-Граафа




ПОИСК





Смотрите так же термины и статьи:

Генератор



© 2024 chem21.info Реклама на сайте