Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Источники постоянного тока

Рис. 257. Электрическая схема катодной защиты ЯГ — источник постоянного тока — катодная поляризуемость защищаемой конструкции анодная поляризуемость вспомогательного анода сопротивления пр, пра — сопротивление соединительных проводов — то же, защищаемой конструкции — то же, защитного изолирующего покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а Рис. 257. <a href="/info/1791366">Электрическая схема катодной защиты</a> ЯГ — источник постоянного тока — катодная поляризуемость защищаемой <a href="/info/1515352">конструкции анодная</a> поляризуемость вспомогательного анода сопротивления пр, пра — <a href="/info/938171">сопротивление соединительных проводов</a> — то же, защищаемой конструкции — то же, <a href="/info/806386">защитного изолирующего</a> покрытия — то же, электролита между защищаемой конструкцией и вспомогательным анодом — то же, вспомогательно-Цф а

    Защитный эффект в отличие от разностного находит большое практическое применение в виде так называемой электрохимической катодной защиты, т. е. уменьшении или полном прекращении электрохимической коррозии металла (например, углеродистой стали) в электролитах (например, в морской воде или грунте) присоединением к нему находящегося в том же электролите более электроотрицательного металла (например, магния, цинка или их сплавов), который при этом растворяется в качестве анода гальванической пары из двух металлов (рис. 198), или катодной поляризацией защищаемого металла от внешнего источника постоянного тока. [c.295]

    Электрохимическая защита металлов от коррозии направлена на снижение силы тока, возникающего при электрохимической коррозии, методом катодной поляризации (приложение внешнего напряжения к корродирующей системе) или методом протекторной защиты (к защищаемой поверхности присоединяют протектор, изготовленный из металла с более отрицательным потенциалом, чем у металла основной конструкции). Устройство катодной поляризации с источником постоянного тока в условиях нефтебаз опасно в пожарном отношении, а протекторная защита не уменьшает количество загрязнений, поступающих в масла, так как протектор, защищая металл основной конструкции, сам в процессе эксплуатации подвергается разрушению, сопровождаемому образованием солей и гидроокисей металла, из которого он изготовлен. В связи с этим методы электрохи- [c.100]

    Протектор является анодом и подвергается интенсивной коррозии, тем самым уменьшая разрушения корпуса аппарата в результате анодных процессов. Аналогичные процессы происходят при катодной защите, когда корпус аппарата присоединяется к отрицательному полюсу источника постоянного тока, а в раствор, содержащийся в аппарате, погружается никелевый стержень, выполняющий роль анода. Для химических аппаратов протекторная защита более удобна в эксплуатации, чем катодная. [c.50]

    В 1800 г. итальянский физик Алессандро Вольта (1745—1827) сделал важное открытие. Он установил следующее два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет ток электрических зарядов , или электрический ток. Вольта сконструировал первую электрическую батарею, представлявшую собой столб из 20 пар металлических пластинок двух разных металлов. Такая батарея, известная под названием Вольтова столба, явилась первым источником постоянного тока. Электрический ток в такой батарее образуется в результате химической реакции, в которой участвуют оба металла и разделяющий их раствор. [c.58]


    Концентрационные элементы используются для определения активности ионов в растворе, химические цепи — как источники постоянного тока — аккумуляторы, окислительно-восстановительные элементы используются для определения констант равновесия и термодинамических функций. [c.292]

Рис. 256. Схема подключения металла к источнику постоянного тока а — при анодноИ поляризации б — при катодной поляризации / — источник постоянного тока 2 — металл 3 — вспомогательный электрод 4 — электролит Рис. 256. <a href="/info/147982">Схема подключения</a> металла к источнику постоянного тока а — при анодноИ поляризации б — при <a href="/info/15283">катодной поляризации</a> / — источник постоянного тока 2 — металл 3 — <a href="/info/134283">вспомогательный электрод</a> 4 — электролит
    Установка термометров сопротивления во взрыво- и пожароопасных помещениях разрешается только при условии питания их измерительной схемы от источников постоянного тока (сухого элемента) напряжением 1,5 ей силой тока не свыше 40 ма. [c.115]

    Для защитного эффекта так же, как и для разностного, безразлично происхождение внешнего катодного тока, т. е. он наблюдается и при катодной поляризации металла от внешнего источника постоянного тока. [c.293]

    Разностный и защитный эффекты наблюдаются при соответствующей поляризации металла или сплава независимо от способа ее осуществления (контакта с другим металлом или поляризации от внешнего источника постоянного тока). [c.295]

    При анодной поляризации корродирующего металла от внешнего источника постоянного тока (при подключении его к положительному полюсу внешнего источника постоянного тока, а вспомогательного электрода из любого электропроводящего материала к отрицательному полюсу — рис. 256, а) обычно увеличи- [c.362]

    Расчет анодной защиты при помощи внешнего источника тока сводится к определению параметров источника постоянного тока для двух режимов его работы 1) при анодной пассивации защищаемой конструкции 2) при поддержании пассивного состояния конструкции. [c.365]

    Все более широкое применение находит электрохимическая защита морских судов и сооружений (протекторная и от внешнего источника постоянного тока) в комбинации с заш,итными покрытиями или как самостоятельное средство защиты металлов от морской коррозии (рнс. 288). [c.404]

    Электрическая схема катодной защиты внешним током приведена на рис. 202, б. Источник постоянного тока 1 дает на зажимах напряжение , необходимое для защиты определенного участка трубопровода. Ток (отрицательные заряды) от отрицательного полюса источника по проводу с сопротивлением R попадает в точке дренажа на защищаемую трубу, сопротивление которой / 2- Затем следует сопротивление У з, являющееся переходным сопротивлением между трубопроводом и грунтом, которое тем больше, чем в лучшем состоянии находится защитная [c.304]

    Депассиваторами могут оыть восстановители ( например,водород), катодная поляризация от внешнего источника постоянного тока или при работе пассивного металла в качестве катода в паре [c.39]

    Однако, несмотря на высокую эффективность, щирокое распространение электростатические обезвоживающие аппараты пока не получили из-за отсутствия надежных и дешевых высоковольтных источников постоянного тока. [c.40]

    Гальванический элемент -- это устройство, сосгоящее из двух электродов, в которых энергия химической реакции преобразуется в электрическую. Гальванические элементы являются источником постоянного тока. В простейшем случае он состоит из двух металлических электродов (например, цинкового и медног о), погруженных в растворы электролитов (солей этих металлов). Между этими растворами осуществляется контакт с помощью пористой перегородки или электролитического мостика (сифонной трубки с гелем, насыщенными раствором КС1 или NH NOj), которые обеспечивают электрическую проводимость между электродными растворами, но препятствуют их взаим--1 ной диффузии. [c.114]

    Включить источник постоянного тока и потенциометр. Прогреть приборы в течение 20 мин. [c.165]

    На рис. XIX, 2 изображена схема расположения приборов лри абсолютном измерении величины э. д. с. по методу Поггендорфа (1841). В контур цепи AB BKJIIQ,ifeHbi источник постоянного тока А (например, аккумулятор), пещеменное сопротивление R и кулометр V. .. Г [c.523]

    Эффект растет с ростом и уменьшением Рк металла Поллое подавление работы микропар достигается при V = (Ук)обр. что возможно только при анодной поляризации металла от внешнего источника постоянного тока, при этом обычно (/а)внешн>/о [c.296]

    Эффект растет с ростом Як и уменьшается с ростом Рц металла Полное подавление работы микро-нар достигается при V = (Ул1е)обр. что возможно при катодной поляризации металла как от внешнего источника постоянного тока, так и при помощи анодного протектора, при этом обычно (/к)онешн>/о Эффект имеет большое практическое значение и используется для уменьшения или полного прекра-ш,ения электрохимической коррозии защищаемой конструкции с переносом растворения на менее ценную конструкцию (протектор или дополнительный анод) [c.296]


    Некоторое затруднение в применении анодной электрохимической защиты — потребность в большом токе для пассивации конструкции — может быть устранено а) постепенным заполнением конструкции раствором под током б) предварительной пассивацией защищаемой поверхности пассивирующими растворами (например, 60% НЫОд + 10% К3СГ2О7) в) применением импульсных источников постоянного тока. Следует также поддерживать потенциал защищаемой конструкции в области оптимальных его значений, чтобы избежать возможного протекания некоторых видов местной коррозии (точечной, межкристаллитной и избирательной коррозии под напряжением). Слабым местом этого вида защиты является недейственность его выше ватерлинии, а иногда и недостаточность по ватерлинии, что требует иногда дополнения его другими методами защиты, в частности использованием для [c.321]

    Ускоренный электрохимический метод испытания на точечную коррозию, предложенный Бреннертом и усовершенствованный Г. В. Акимовым и Г. Б. Кларк, состоит в том, что образец коррозионностойкой стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал (рис. 355). При достижении некоторого значения потенциала (потенциала пробивания) защитная пленка на образце разрушается в одной или нескольких точках, вследствие чего значение электродного потенциала образца уменьшается. Наблюдается хорошее соответствие результатов сравнительных коррозионных испытаний хромистых и хромоникелевых сталей на точечную коррозию с данными, полученными методом определения потенциала пробивания. [c.463]

    Для борьбы с электрохимической коррозией мeтaллQв применяют также и специфические электрохимические методы, основанные на том, что защищаемый металл подвергается катодной поляризации. Так, в методах, называемых протекторной защитой., это достигается присоединением к защищаемому, металлу более активного металла протектора), который становится анодом, благодаря чему анодные участки поверхности защищаемого металла полностью или частично превращаются в катодные по отношению к протектору. В других методах, называемых катодной защитой, аналогичный результат достигается присоединением защищаемого металла к отрицательному полюсу внешнего источника постоянного тока. Защитное действие осуществляется благодаря повышению концентрации электронов в поверхностном слое металла, что затрудняет растворение его. [c.460]

    Степень поляризации зависит от характера анодных и катодных участков, состава коррозио1шой среды и плотности коррозионного тока. Чем бо,1ьше наклон поляризационных кривых, тем сильнее поляризуется электрод и тем сильнее тормозится анодный или катодный процесс. Для снятия поляризационных кривых могут быть использованы разные схемы установок. Схема любой установки для снятия поляризационных кривых гальваностатическим способом подобна схеме для измерения электродных потенциалов компенсационным методом и отличается от нее по существу только тем, что она предусматривает подвод постоянного тока к исследуемому электроду и измерение его величины, т. е. включает источник постоянного тока, приборы для измерения силы тока и регулирования его величины и вспомогательный поляризующий электрод. Схема установки для снятия поляризационных кривых приведена на рис. 222. [c.342]

    Заслуживает внимания конструкция плазмотрона установки "Аквацентрум" с водостабилизированной системой сжатой дуги. В плазмотроне в качестве электрода-катода использован расходуемый в процессе работы (2 мм/мин) графитовый стержень диаметром 13 мм. Возбуждаемая от источника постоянного тока сжатая струя между графитным стержнем и медным анодом диаметром 150 мм, вращающимся с частотой 2800 мин , проходит через водостабилизирующий канал. [c.61]

    Достоинство катодной защиты — надежность, долговечность недостаток — относительная сложность аппаратурного оформления в тех случаях, когда режим работы поддерл<ивается автоматически, а также необходимость а автономном источнике постоянного тока. [c.284]

    Для сварки в среде углекислого газа применяют следующие источники постоянного тока преобразователи ПСО-ЗОО, ПС-500-3, ПС-500 и ПСМ-1000, предназначенные для питания сварочной дуги при ручной дуговой сварке и сварке под флюсом сварочные преобразователи ПСГ-350, ПСГ-500 и ПСУ-500 с жесткой вольт-амперной характеристикой, специально разработлн- [c.97]

    Принципиальная схема амперометрической установки такая же, как полярографической (см. рис. 2.23), но аппаратурное оформление ее может быть существенно упрощено. Амперометрическая устаЕювка может быть собрана непосредственно на лабораторном столе из доступных и недорогих приборов. В комплект установки должны входить источник постоянного тока (сухой элемент, аккумулятор), вольтметр постоянного тока, микроамперметр постоянного тока чувствительностью 10 —10 А/деление, потенциометр или магазин переменного сопротивления примерно на 1 кОм, магнитная мешалка или электромотор, вращающий индикаторный электрод, электрохимическая ячейка, включающая сосуд для титрования (эго мол<ет быть химический стакан небольшой вместимости), микробюретку и систему электродов. Такого типа установка изображена на рис. 2.31. [c.157]

    В генерационный блок входят внещний источник постоянного тока 1, высокоомные сопротивления 2 для получения стабильного требуемого тока электролиза, миллиамперметр 3 для измерения тока, электролизер 4, состоящий из катодной и анодной камер, в которые помещаются генераторный 5 и вспомогательный 6 электроды. [c.164]

    В качестве источника постоянного тока может быть применен универсальный источник питания УИП-1 и УИП-2 или потен-циостат П-5848 и П-5827 М. [c.164]


Смотреть страницы где упоминается термин Источники постоянного тока: [c.203]    [c.285]    [c.125]    [c.524]    [c.79]    [c.248]    [c.291]    [c.306]    [c.320]    [c.363]    [c.392]    [c.458]    [c.462]    [c.298]    [c.299]    [c.43]    [c.284]    [c.164]    [c.166]   
Смотреть главы в:

Краткий справочник гальванотехника -> Источники постоянного тока

Краткий справочник гальвонотехника Издание 2 -> Источники постоянного тока

Электрооборудование насосных и компрессорныхстанций и нефтебаз -> Источники постоянного тока

Физические методы анализа следов элементов -> Источники постоянного тока


Электрофорез в разделении биологических макромолекул (1982) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Аппаратура. Источники света Дуга постоянного тока

Выпрямители в качестве источников электрической энергии постоянного тока

Железные дороги с тягой на постоянном токе как источники блуждающих токов

Источник малых постоянных токо

Источник постоянного тока для кулонометра

Источники в эмиссионном спектральном дуга постоянного тока

Источники тока

Кулонометр схема источника постоянного тока

Кулонометрическое титрование источники постоянного тока

Организация гальванического цеха. Источник постоянного тока



© 2025 chem21.info Реклама на сайте