Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиус инерции клубка среднеквадратичный

    Если в растворе молекула полимера не имеет определенной фиксированной третичной структуры, например, в гелях, то ее можно рассматривать как статистический клубок . Для описания поведения таких макромолекул в качестве модели обычно используют так называемый эрзац-клубок Куна . В то время как в реальной полимерной цепи отдельные связи и углы между ними достаточно жесткие и имеет место лишь более или менее заторможенное вращение, свободно сочлененная цепь состоит из небольших, одинаковых, соединенных друг с другом участков , статистически ориентированных по отношению друг к другу. Длину этих участков называют персистентной длиной. Спрашивается, какова персистентная длина свободно сочлененной цепи, обладающей такими же физическими свойствами, как и реальная цепочечная макромолекула По персистентной длине можно судить о жесткости молекулы полимера. Среднеквадратичное расстояние между сонцами свободно сочлененной цепи / и ее радиус инерции г связаны с персистентной длиной а соотношением  [c.127]


    В. Кун и Г. Кун [733] провели тщательный анализ характеристической вязкости, которую следовало ожидать для свободно протекаемого клубка. В разделе Б-2 было показано, что коэффициент вращательной диффузии для жесткого свободно протекаемого клубка пропорционален произведению числа сегментов цепи на среднеквадратичный радиус инерции. Таким образом, рассчитанная на единицу веса растворенного вещества энергия, рассеиваемая при трении жидкости, будет пропорциональна (8 ), и если геометрия клубка может быть описана свободносочлененной моделью (согласно которой ( ) пропорционально числу звеньев цепи), то [т ] должна быть пропорциональна длине цепи. Так как клубок не является сферически симметричным, а по своей общей форме представляет несколько вытянутый эллипсоид вращения, В. Кун и Г. Кун делают вывод, что клубки с очень высокой внутренней вязкостью должны до некоторой степени ориентироваться в направлении потока, что приводит к уменьшению [т]] с увеличением д таким же образом, как это описано в предыдущем разделе для жестких эллипсоидов вращения. С другой стороны, они пришли к важному выводу о том, что характеристическая вязкость клубков с нулевой внутренней вязкостью, расширяющихся или сжимающихся во время каждого оборота клубка [c.256]

    Каким образом отразится увеличение концентрации раствора на объемных взаимодействиях На этот вопрос можно ответить вполне определенно, исходя из чисто умозрительных рассуждений. Объемные взаимодействия есть результат притяжения или отталкивания звеньев одной цепи. С увеличением концентрации раствора в клубок все больше проникает звеньев другой цепи, что иллюстрируется рис. 2.12. Следовательно, контакты звеньев одного клубка все в большей степени заменяются на контакты звеньев разных клубков. Это должно привести к прогрессивному уменьшению эффектов объемного взаимодействия, в частности уменьшению исключенного объема и уменьшению а. В расплаве любое звено цепи окружено чужими . Поэтому можно утверждать, что в расплаве роль объемных взаимодействий сведена на нет. Впервые подобные рассуждения высказал Флори на основании их он заключил, что в расплаве реализуются 0-условия, и клубок является идеальным. Это утверждение называется теоремой Флори. Расплавы аморфных полимеров при охлаждении стеклуются, в результате конформации идеальных клубков фиксируются, замораживаются . Следовательно, 0-состояние, т.е. состояние идеального клубка, характерно не только для разбавленных растворов и расплавов, но и для стекол полимеров. Этот вывод подтверждают, в частности, значения среднеквадратичных радиусов инерции макромолекул полистирола различной молекулярной массы в блоке и в разбавленных растворах в 0-растворителе циклогексане радиусы инерции измерены методом рассеяния нейтронов  [c.59]


    В. Кун и Г. Кун [670], а также Дебай и Бики [671] указали, что для такой модели можно предусмотреть два крайних случая. В первом случае бусинки расположены сравнительно далеко друг от друга и поэтому возмущением потока, вызванным отдельными бусинками, можно пренебречь. Эта модель обычно называется свободно протекаемым клубком. Если такой клубок заставляют передвигаться в вязкой жидкости, то на каждое его звено независимо от присутствия других подобных звеньев действует сопрот11влоние трения и эффективный коэффициент трения клубка будет пропорционален числу звеньев, составляющих клубок. Во втором случае взаимодействие менхду возмущениями потока настолько велико, что растворитель прочно удерживается внутри клубка, который можно рассматривать как гидродинамически эквивалентную сферу . Радиус этой эквивалентной сферы регулирующ1тй сопротивление трения при поступательном движении, пропорционален некоторым характерным размерам клубка, например среднеквадратичному радиусу инерции. Тогда но аналогии с уравнением (У1-2) имеем [c.231]


Смотреть страницы где упоминается термин Радиус инерции клубка среднеквадратичный: [c.243]    [c.243]   
Физика полимеров (1990) -- [ c.43 ]




ПОИСК







© 2025 chem21.info Реклама на сайте