Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Индий в присутствие других металлов

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Определение индия е присутствии других металлов прямым титрованием. с эриохром черным Т [c.102]

    Полярографическое определение индия в присутствии других металлов, в частности и цинке. [c.137]

    Описан метод предварительного определения индия в присутствии других металлов, в частности цинка. В предложенном методе сначала выделяют индий и другие металлы (стр. 164) экстракцией их оксихинолятов при pH 4 хлороформом из растворов, содержащих тартраты. После разрушения оксихинолина индий, галлий, алюминий и другие экстрагируют хлороформом из водного цитратно-цианидного раствора с pH 8,5, используя совместно купферрон и дитизон. Утверждают, что в отдельности ни один из этих реагентов не обеспечивает удовлетворительного извлечения индия. Индий реэкстрагируют затем из хлороформа в водный раствор, встряхивая с азотной кислотой (1 9). Окончательное определение индия проводят, добавляя 5 мл аммиачно-цианидной смеси (смесь 200 мл [c.463]

    Была исследована также каталитическая активность сплавов серебра с алюминием, магнием, медью, цинком, галлием, германием, селеном, индием, кадмием, оловом, теллуром, висмутом [138]. Показано, что степень превращения метанола на серебре и его сплавах с различными добавками, за исключением цинка, германия, галлия, висмута возрастает с увеличением отношения Оа СНзОН. Селективность процесса окисления в формальдегид на серебре и его сплавах с теллуром нечувствительна к повышению этого отношения, тогда как у сплавов серебра с германием, галлием и индием — увеличивается, а у остальных уменьшается. Введение в серебро 10% магния [139], меди и кадмия увеличивает дегидрирующую способность катализатора, повышая тем самым общую конверсию метанола, а присутствие селена и сурьмы увеличивает селективность процесса. Существенно пониженной каталитической активностью обладают сплавы серебра с цинком, галлием и германием. Сплавы серебра с алюминием, теллуром, оловом по сравнению с чистым серебром также проявляют пониженную активность. Однако по другим наблюдениям, добавки алюминия интенсифицируют процесс [140]. Для сплавления с серебром рекомендуется платина (0,45—0,75%>) [113]. Есть указания на целесообразность применения в качестве добавок и оксидов некоторых металлов молибдена (VI) [141], титана (IV), магния и кальция [142]. В последнем случае массовая доля серебра составляет от 5 до 30% от всего катализатора. Предложено использовать в качестве добавок к серебру пероксиды щелочных и щелочноземельных металлов [114], а также соли серебра — карбонаты и оксалаты [143]. Однако сведений о практическом применении сплавов и модифицирующих добавок пока нет. [c.55]


    Акридин взаимодействует с солями индия (и многих других металлов) в присутствии роданида калия с образованием ха-рактерных светло-желтых триклинических призм [324]. [c.68]

    К 0,03 мл раствора соли индия прибавляли 0,06 мл буферного раствора с соответствующим значением pH, 0,03 мл 0,05— 0,1%-ного раствора азокрасителя. Параллельно ставили контрольные опыты. Чувствительность реакции на ион индия сильно зависит от pH раствора (табл. 59). При рН 2 и при рН>10 ни один из изученных реактивов не дает реакций с ионом индия. Из табл. 59 видно, что оптимальное значение pH раствора равно 5 наивысшую чувствительность имеют азокраситель II и галлоцианин. Кроме иона индия с изученными реактивами реагируют ионы многих тяжелых металлов. Азокрасители I и II позволяют обнаружить ион индия в присутствии алюминия. Предельные отношения при открытии индия в присутствии других элементов, в отсутствие фторида натрия, представлены в табл. 60, а в присутствии фторида натрия (1 %-ный раствор)—в табл. 61. [c.147]

    Мэй и Гофман [48 1 определяли 10 мкг индия в присутствии ряда других металлов, а также 10-кратного количества ионов В 1%-ном растворе K N и при [c.229]

    Ряд других металлов, как кобальт, никель, медь, цинк и кадмий, в присутствии которых мы изучали выделение гидроокиси индия при помощи пиридина с целью отделения индия, также имеют склонность к образованию индатов. По нашим наблюдениям, это в меньшей степени относится к никелю. Ме- [c.45]

    Осаждение при помощи пиридина железа, алюминия, хрома, титана, циркония, индия, галлия и некоторых других металлов позволяет отделить их от марганца, кобальта, никеля , цинка, меди, кадмия, щелочных земель, магния и щелочей. Осаждение ведут при нагревании из слабо кислого раствора в присутствии хлористого аммония. [c.110]

    Ряд других металлов, таких как кобальт, никель, медь, цинк и кадмий, в присутствии которых изучалось выделение гидроокиси индия при помощи пиридина с целью отделения индия, также имеют склонность к образованию индатов. По нашим наблюдениям, это в меньшей степени относится к никелю. Механизм реакции совершенно аналогичен описанному в отношении индия и марганца. [c.42]

    От большинства других металлов индий отделяется экстракцией дитизоном из щелочных растворов цианидов. Вместе с индием экстрагируются свинец, олово (II, но не IV), висмут и таллий (I, III). Висмут (если он не присутствует в больших количествах) можно удалить экстракцией дитизоном из слабокислых (например, хлорнокислых) растворов до экстракции индия этим реагентом из щелочных растворов Выделение индия с помощью дитизона было применено для предварительного определения индия посредством 8-оксихинолина (см. раздел ПА) показано, что получаются хорошие результаты, если не считать тех случаев, когда присутствуют родий и иридий, которые препятствуют полному извлечению дитизоната индия [c.460]

    Сульфид индия (III) можно количественно осадить только из слабокислых растворов (например, из смеси уксусной кислоты и ацетата). Однако и в сильнокислых растворах он также соосаждается с различными металлами из группы осаждающихся сероводородом, поэтому осаждение сероводородом не может служить методом отделения индия от этих металлов Вероятно, что в качестве коллектора для индия при сульфидном осаждении из слабокислых растворов могут служить цинк и сурьма (III). Индий можно отделить от кадмия, никеля, кобальта, марганца и, менее эффективно, от цинка и меди при осаждении аммиаком в присутствии аммонийных солей при pH 5 или 6. Подобное разделение эффективно осуществляется с помощью сульфита натрия, цианида калия и других реагентов, создающих такой pH в водном растворе, при котором осаждаются гидроокиси индия или его основные соли. Такое разделение можно применить для сравнительно концентрированных растворов индия, о поведении же очень малых количеств индия в этих условиях известно очень немного. [c.460]

    Регулируя потенциал анода при разложении амальгамы, можно отделить индий, с одной стороны, от цинка, который первым переходит в раствор, с другой стороны,— от олова, меди, висмута, железа и других более электроположительных металлов, которые остаются в амальгаме, когда индий переходит в раствор [107]. В присутствии меди, никеля, олова и железа часть индия задерживается амальгамой, что объясняется образованием соединений индия с ними [108]. Для селективного разложения индиевых амальгам рекомендуется солянокислая среда. При низкой плотности тока (0,05—0,1 А/см ) примерно 90% индия от содержащегося в амальгаме можно выделить на катоде в чистом виде. [c.310]

    Образование продуктов деалкилирования часто наблюдается при окислении алкилароматических углеводородов воздухом в присутствии катализаторов из окислов ванадия, молибдена, висмута, свинца, кадмия, индия и других металлов в газовой фазе. Из толуола в этом случае получается бензол, H3 алкилнафталинов нафталин, из ксилолов толуол и бензойная кислота, из пи-колиНов пиридин. Хотя выход циклических продуктов редко превышает 2—5% от теоретического, описано несколько случаев газофазного гетерогенного окисления, когда деалкилирование было преобладающим направлением. В случае толуола для этих целей в качестве катализаторов рекомендуют уранат висмута BI2UO6 [9, 10]. 1-Метилнафталин в смеси с воздухом над окисью кадмия при 300—400 °С превращается в нафталин, давая его с выходом 20% при селективности до 60% [11].,Пиридин лучше всего получается при гетерогенном окислении 2-пиколина на окислах марганца выход пиридина достигает 27, а на окисном молибденовом катализаторе 50% от теоретического в расчете на поданное сырье [12—1,4]. [c.162]


    В водных растворах солей трехвалентных галлия, индия и таллия а присутствии избытка НВг образуются ацидокомплексы НМеВг4, которые хорошо экстрагируются диэтиловым эфиром. При наличии 4—5 моль НВг в X л коэф-.фициенты распределения указанных комплексов Оа, 1п и Т1 равны соответственно 30, 800 и 8000. Путем такой экстракции три указанных иона хорошо отделяются от ионов десятков других металлов. [c.220]

    Ионообменный способ. Применение ионного обмена для извлечения индия из растворов затрудняется присутствием больших количеств других металлов, сорбирующихся вместе с индием. Только фосфорно-кислые катиониты типа СФ-5 и КФ-П относительно селективно сорбируют индий из сернокислых растворов [113]. Железо (III) и мышьяк сорбируются вместе с индием. Оптимальные условия сорбции 50—60° и 9—14 г/л свободной серной кислоты. На рис. 71 представлена технологическая схема, предложенная для извлечения индия из растворов [114]. Сорбируют непосредственно из пульпы до ее окисления. Сорбент после отделения от пульпы промывают разбавленной серной кислотой. Затем сорбировавшиеся металлы элюируют 2 н. соляной кислотой. В результате достигается 80-кратное обогащение индием. Индий из солянокислого раствора, где вместе с ним могут находиться железо, цинк, свинец и т. д., может быть выделен вышеописанными методами. [c.312]

    Таллий выщелачивается значительно легче индия. Во многих случаях, когда он присутствует в виде TljO, достаточно выщелачивания водой [152]. Можно выщелачивать водой и в том случае, если в обрабатываемом материале есть хлор. Только и само выщелачивание, и отделение раствора от остатка нужно проводить при нагревании, так как растворимость хлорида таллия сильно зависит от температуры. Иногда вместо водного выщелачивания применяют выщелачивание слабыми содовыми растворами. Это предотвращает переход в раствор хлоридов других металлов, например кадмия [192. Рекомендуется также выщелачивать водой пыли, добавляя известь [190]. При этом несколько увеличивается извлечение таллия в раствор, по-видимому, за счет разложения малорастворимого арсенита таллия. Если таллий присутствует в виде труднорастворимых соединений, то применяют выщелачивание разбавленной серной кислотой. Более полного извлечения можно достичь сульфатизацией пылей в кипящем слое после грануляции с крепкой серной кислотой, как это описано в разделе, посвященном индию. [c.343]

    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Осаждение в виде металлической сурьмы. От Sn, d и ряда других эломентов Sb можно отделить осаждением в виде металла в среде 0,4 М НС1 восстановлением железным порошком. Вместе с Sb осаждаются Си, Bi и частично РЬ и As [1362]. Для выделения Sb в элементном виде в качестве восстановителя применяют также другие металлы, в том числе губчатый свинец [714], кадмий в виде порошка [660] и алюминий в виде опилок [587]. С применением губчатого свинца одновременно с Sb выделяются Си и Bi. При выделении Sb с использованием порошка кадмия цементацию проводят в среде 6 М НС1 при нагревании. Из растворов с концентрацией Sb > 1,5 г-ион л она выделяется количественно. С применением алюминия можно количественно выделять Sb, проводя цементацию при 60° С в 3%-ном растворе тартрата натрия. В этих условиях As(III) не выделяется. Однако в присутствии даже небольших количеств As(III) сурьма выделяется уже не полностью присутствие равных или больших количеств As подавляет цементацию Sb. В 0,5 М НС1 происходит количественная цементация Sb, в то время как As остается в растворе. Если же в растворе присутствует Си, то алюминий восстанавливает As до арсина [587]. При определении Sb в галлии и сплавах индия с галлием и индия с цинком выделяют Sb цементацией ее на оловянном электроде из раствора, 0,5 М по НС1 [662]. [c.100]

    Иридий, родий, рутений и платина в этих условиях осаждаются пеколичественно. В присутствии металлов группы платины концентрацию НС1 устанавливают на уровне 1 н., раствор насыщают сероводородом и нагревают в закрытом сосуде 1 час на кипящей водяной бане [459]. При этом металлы группы платины осаждаются заметного соосаждения индия не происходит. Затем осаждают другие металлы из среды 0,6 н. НС1, как описано выше. [c.48]

    Ионообменный способ. Применение ионного обмена для извлечения индия из растворов затруднено присутствием боль ших количеств других металлов, сорбирующихся вместе с индием Поэтому выделение индия непосредственно из технических раство ров не находит применения. Имеющиеся предложения по ионооб менному получению индия относятся уже к очистке индиевых кон центратов. Индий поглощается из солянокислых растворов (5—7 н H I), в которых он присутствует в виде анионов, сильноосновными анионитами (с активными аминогруппами), такими, как амберлит, или вофатит, L-150, чехословацкий анионит OAL. Вместе с индием поглощаются свинец и сурьма. При элюировании водой или разбавленной соляной кислотой (0,1 н.) сначала десорбируется индий, а затем уже свинец. Сурьма удаляется из смолы промывкой [c.193]

    Комплексы I класса (первая колонка) расположены в порядке увеличения трудности элюирования. Время удерживания измерялось при 125° (условхш опытов и тип колонки указаны в сноске на стр. 31). В качестве стандарта для вычисления относительных удерн иваемых объемов был выбран трифторацетилацетонат алюминия, поскольку его легко приготовить и он легко элюируется из колонок с разными жидкими фазами. Относительные удерживаемые объемы других комплексов были определены путем деления их истинных удерживаемых объемов на истинный удерживаемый объем трифторацетилацетоната алюминия. В результате были получены следующие зпачепия бериллий 0,35 алюминий 1,00 галлий(III) 1,8 скандий(III) 2,1 медь(П) 2,5 хром(1П) 2,6 индий(Ш) 3,0 ванадий (IV) в виде ванадилового комплекса 3,1 родий (III) 5,9. Комплексы бериллия и алюминия имеют характерное время удерживания, показывающее, что их можно разделить и определить в присутствии любых других металлов, поскольку при этом ие будет наблюдаться наложения пиков. Хотя относительные удерживаемые объемы ряда комплексов очень близки, смеси их, как это будет показа- [c.32]

    Сообщалось, что настоящие усы образуются самопроизвольно на свеже-обработанных вкладышах из AlSn — сплава, причем в течение нескольких дней нри комнатной температуре они самопроизвольно дорастают до 0,2 см в длину нри толщине 1—4 мкм. На массивном металле усы образуются не часто, однако на поверхности электроосажденных металлов или на других очень тонких покрытиях их появление довольно обычно. Так, усы образуются на покрытиях из олова, кадмия, цинка и сурьмы при комнатной температуре и на большинстве других металлов при повышенных температурах (но пе образуются на свинце и индии). Природа металла подложки оказывает очень сильное влияние на образование настоящих усов. Предполагалось, что во многих из этих случаев материалом усов являются па самом деле окислы или сульфиды, а не Сами металлы (позднее было показано, что усы окислов и сульфидов образуются очень часто при химических реакциях в газовой фазе). Ймеются данные, показывающие, что рост многих настоящих усов облегчается присутствием атмосферного кислорода, водяных паров или органических загрязнений. [c.287]

    Мешающие вещества. Определению мешает тантал, который с фторидом образует НТаРв, а последний взаимодействует с красителями с образованием экстрагирующегося соединения. Мешающее влияние других металлов в сильной мере зависит от присутствия анионов. Так, в присутствии галогенидов и роданидов определению бора мешают галий, индий, таллий, золото и др. Из анионов определению бора мешают роданид, иодид, нитрат и некоторые другие, образующие с красителями соли, экстрагирующиеся неводными растворителями. [c.63]

    Кристаллическая структура. В настоящее время известны две кристаллические модификации иНд. Кристаллические формы зависят от той температуры, при которой был получен гидрид. Обычная форма обозначается как р иНд. Кристаллическая структура этой модификации была определена Рандлом [75] методами рентгеноструктурного анализа и дифракции нейтронов. Автор установил, что Р-иНд имеет простую кубическую решетку, а металл имеет структуру, подобную Р-вольфраму. Известен [75] параметр решетки Р-иНд ао=6,6310 А, плотность 10,92 г/сл [75]. Гидриды и дейтериды имеют одинаковые структуры [76], кристаллическая решетка дейтерида немного меньше, чем у гидрида. Вследствие того, что дейтериды дают более интенсивные нейтро-нограммы, они были более изучены, чем гидриды. По-видимому, атомы дейтерия расположены по неправильному тетраэдру па равных дистанциях от четырех атомов урана, расстояние уран— дейтерий равно 2,32 А. Вероятно, что в этой структуре почти отсутствуют металлические уран—уран-связи, по-видимому, вся структура удерживается за счет взаимодействия между ураном я водородом. Атомы дейтерия расположены на значительно больших расстояниях, чем можно было ожидать на основании ионных радиусов. Пока что эта структура остается загадочной и нуждается в дальнейшем исследовании. Трудно оценить те сложности, которые вносятся в интерпретацию данных по дифракции нейтронов из-за возможного присутствия других фаз иНд (или иВд). [c.154]

    Флуоресцентную индикацию впервые применил Патровски [53 (38)]. Он титрует в УФ-свете в присутствии морина. Точку эквивалентности устанавливают по тушению интенсивной зеленой флуоресценции. Белчер и др. [60 (153)] применяют о-дианизидин-тетрауксусную кислоту при pH = 5,5—6,0, причем обратно титруют избыток ЭДТА раствором сульфата меди в УФ-свете до тушения весьма интенсивной флуоресценции. Так как по этому методу определяется большое число других металлов, то селективность его по отношению к индию невелика. [c.276]

    Применение маскирующих средств. Основанные на этом методы титрования исходят из того, что, например, один или группа металлов связываются в комплексы, более прочные, чем с ЭДТА, или осаждаются и т. п. Так, алюминий и титан мешают титрованию редкоземельных и щелочноземельных элементов. Однако А1 и Т1 можно замаскировать, связав их в прочный комплекс с пирокатехином (чаще применяют сульфопроизводное пирокатехина — тайрон). Редкоземельные элементы, а также индий и свинец можно титровать в присутствии цинка, меди, кадмия, кобальта и других металлов, если эти последние связать в прочные комплексы цианистым калием. Титрованию цинка, кадмия и т. д. мешает ртуть (II) ее легко замаскировать иодидом. [c.425]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]

    Приводимый ниже основной метод включает отделение индия от большинства других металлов экстракцией дитизоном. Свинец и таллий(1) экстрагируются вместе с индием, но не мешают определению посредством 8-оксихинолина при pH 3,5. Точность определения составляет 1—2 у при определении 30 у индия в присутствии 100 у других 57 элементов. Как уже было отмечено, сильно заниженные результаты получаются в присутствии родия и иридия считают, что эти элементы препятствуют экстракции индия дитизоном нз щелочных растворов, содержащих цианиды. В присутствии бериллия в количествах, превышающих примерно 0,1 мг, получаются несколько заниженные результаты, вероятно, вследствие образования продуктов гидролиза. Попытки перевести дитизонат индия в диссоциированную форму при встряхивании экстракта (хлороформа) с кислотой оказались неудачными, так как при этом в водную фазу переходят окрашенные органические вещества, которые затем извлекаются хлороформом при определении индия экстракцией его оксихинолята хлоро- [c.461]

    Г у р ь е в С. Д., Г инзбург Л. Б., Шибаренкова А. П.— Описано флуориметрическое определение индия (и галлия) в пыли дымовых газов. Индий экстрагируется в виде бромида эфиром из 5 Л1 соляной кислоты в присутствии восстановителя, реэкстракция индия осуществляется встряхиванием органической фазы с 6 /И соляной кислотой, но уже в присутствии окислителя. Это позволяет последовательно отделять индий от галлия и других металлов. [c.465]

    Индий имеет наибольшее сходство с галлием и алюминием, а также с кадмием и оловом. Амфотерный характер гидроокиси индия выражен значительно слабее, чем гидроокисей галлия и алюминия водные растворы солей индия гидролизованы менее сильно, чем растворы соответствующих солей галлия и алюминия сульфид индия ТпгЗз, в отличие от сульфидов галлия и алюминия, устойчив в присутствии воды. Сульфат индия, так же как и сульфаты алюминия и галлия, образует двойные соли с сульфатами калия, рубидия, цезия и аммония. Индий существенно отличается от галлия и других трехвалентных металлов тем, что он осаждается в форме сульфида из слабокислого раствора. Сходство индия с кадмием и оловом проявляется в способности к образованию тугоплавких окислов, окрашенных в желтый цвет сульфидов и устойчивых при нагревании хлори- [c.5]

    А. Ii. Русанов [72] открывал индий при возбуждении спектра конденсированной искрой по линиям In 4511 и 4101 A. Индий предварительно выделялся из разбавленного раствора на пластинке из чистого цинка площадью около 9 мм (в течение суток). Одним электродом служила цинковая пластинка с выделенным индием, другим — модный стерженек. Продолжительность видимости линий зависит от количества индия на поверхности цинка. При минимальных количествах индия линия вспыхивает только в первый момент пропускания искры. Метод позволяет открывать 0,001 мг In в 10 МпИ раствора. В присутствии больших количеств солей моди, которая также выделяется на цинке, чувствительность открытия сильно понижается. В этом случае цинк с высадившимися на нем металлами растворяют в 20%-ной НС1, нерастворившую металлическую медь отфильтровывают на фильтре из стеклянной ваты, раствор нейтрализуют NH4OH и из него снова высаживают индий на цинковую пластинку. А. К. Русанов открывал этим методом индий в солях цинка и цинковой обманке. [c.219]

    По Остроумову [244], осаждение пиридином лозволяет полностью отделять железо, алюминий, хром, уран, индий, галлий, титан, цирконий, торий и скандий от кобальта (и других двухвалентных металлов). Этот метод изучался и другими авторами [1347]. Значительные количества сульфатов мешают разделению. Кро.ме того, в этом случае выделяются основные соли алюминия, железа и хрома, а осадок очень плохо отстаивается и проходит через фильтр осаждение не количественно. Если количество сульфатов невелико, разделение удается в присутствии хлорида аммония, который препятствует образованию основных солей и способствует быстрой коагуляции осадка. [c.65]

    Метод может быть использован для определения галлия в присутствии металлов, дающих с ТЭТГА комплексы состава 2 1. Другой способ определения галлия в присутствии индия заключается в прямом титровании галлия ЭДТА в кипящем растворе, содержащем высокие концентрации хлорида аммония для маскирования индия в виде хлорокомплекса. Переход окраски от красной к чисто желтой. Хорошие результаты получаются до молярного отношения 1п Оа ЗОО [801]. В присутствии алюминия и некоторых других элементов галлий предварительно отделяют экстракцией изопропиловым эфиром из 7 Ai НС1. [c.97]

    Метод отличается высокой селективностью, его определению не мешают щелочные и щелочноземельные металлы, Mg, Мп, Сг, сульфат-,арсенит-,фосфат-,молибдат-,вольфрамат- и фторобораг-ионы, а также тиомочевина. Влияние некоторых ионов (А1, Си, Т1 и др.) можно устранить добавлением маскирующих реагентов. Цитрат-ионы препятствуют реакции галлия с МААР вследствие образования достаточно прочных цитратных комплексов галлия. Это свойство использовано для разработки метода раздельного титрования галлия и индия в их смеси. Сначала титруют сумму индия и галлия раствором комплексона III в присутствии МААР, а затем в другой части раствора связывают галлий 10%-ным раствором лимонной кислоты и оттитровывают индий с тем же индикатором. Разность объемов раствора комплексона III между первым и вторым титрованием соответствует количеству галлия. [c.104]

    К элементам, хорошо извлекающимся из солянокислых сред, относятся Си , Zn, С(1, Hg, Оа, 1п, Т1, В , ЗЬ. Менее полно извлекаются Зп, РЬ, и, молибденовая кислота не извлекаются Ве, 1 % и другие щелочноземельные металлы, А1, Зс, У, Ьа, Т1 практически не извлекаются Zr, Н1, ТЬ, Сг, Мп, N1. Уже из этого далеко не полного перечня видно, что экстракция даже в присутствии такого простого реагента, как соляная кислота, дает возможность разделять ряд близких но свойствам элементов. Очень легко и полно отделяется железо от Т1, А1, Сг, Мп, N1 галлий, индий, таллий — от Зс, У, Ьа галлий, индий, таллий — от Ът, Н , ТЬ. Без особых затруднений может быть отделена медь, причем не только от элементов, не реагирующих с диапт1ширилмета-ном, но и от элементов, экстрагирующихся хлороформом. Если в качестве растворителя взять смесь хлороформа и четыреххлористого углерода, в котором соединения диантипирилметана с аци-докислотами вообще не растворяются, то медь практически полностью останется в водном слое. После отделения экстрагирующихся элементов она может быть переведена в хлороформный слой, если в раствор ввести восстановитель типа аскорбиновой кислоты. Образующаяся при этом одновалентная медь полностью [c.136]


Смотреть страницы где упоминается термин Индий в присутствие других металлов: [c.300]    [c.8]    [c.24]    [c.55]    [c.449]    [c.142]    [c.464]    [c.307]    [c.22]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.197 ]




ПОИСК





Смотрите так же термины и статьи:

Другие металлы

Индий

Индит



© 2025 chem21.info Реклама на сайте