Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Многоэлектронные атомы модель ССП

    Магнитные свойства ферромагнитных материалов определяются магнитными свойствами многоэлектронного атома. Однако далеко не все материалы с многоэлектронными атомами обладают ферромагнитными свойствами. Строение атомов ферромагнитных материалов имеет ряд особенностей. Атом состоит из положительно заряженного ядра, вокруг которого вращаются электроны, образующие электронные слои и оболочки. Число электронных слоев определяют главным квантовым числом, которое принимает целые значения 1, 2, 3,. .., п. Число оболочек в слое выражают орбитальным квантовым числом I и обозначают их буквами 8, р, <1, f,. ... На рис. 1.16 показана планетарная модель атома железа, из которого видно, что в атоме содержится четыре электронных слоя. В первом слое находится одна электронная оболочка 18 с двумя электронами во втором слое содержатся оболочки 28 с двумя электронами, 2р с шестью электронами в третьем слое - оболочка Зз с двумя электронами, оболочка Зр с шестью электронами и оболочка 3(1 с шестью [c.238]


    Многоэлектронные атомы. Поскольку волновые уравнения многоэлектронных атомов не решены, приходится обратиться к водородному атому, как к модели, чтобы получить приближенно более сложные решения для других систем. Предполагается, что каждый электрон описывается волновой функцией но форме, подобной функции, применимой к атому водорода. Так, два электрона гелия занимают 1х-орбиту, и каждый обладает различной спиновой функцией. [c.109]

    В электрическом разряде атомы испускают свет, и цвет, который мы видим при этом, позволяет определить схему уровней энергии атома. Многоэлектронные атомы, как и атом водорода, испускают линейчатый спектр — можно наблюдать только определенные энергии. Таким образом, для объяснения необходима квантовомеханическая модель. Однако расстояния между уровнями энергии у многоэлектронных атомов не связаны такой простой зависимостью, как уровни атома водорода. Тем не менее такие довольно сложные спектры можно понять с помощью квантовых чисел атома водорода, если учесть межэлектронное отталкивание. Как это делается, можно понять с помощью схем энергетических уровней следующих двух элементов, гелия и лития. [c.47]

    При обсуждении э.пектронного строения многоэлектронного атома следует исходить из наличия у него ядра и соответствующего числа электронов, Будем предполагать, что допустимые электронные орбитали, если и не точно идентичны орбиталям атома водорода, то представляют собой нечто подобное им-так называемые водородоподобные орбитали. Тогда можно мысленно построить многоэлектронный атом, последовательно помещая на эти орбитали по одному электрону, причем процесс заселения следует начинать с наиболее низких по энергии орбиталей. Таким образом мы построим модель атома в его основном состоянии, т. е. в состоянии с низшей электронной энергией. Такой способ мысленного построения многоэлектронного атома впервые применил Вольфганг Паули (1900-1958), который назвал описанный процесс принципом заполнения. По существу, однако, процесс мысленного построения атома основывается на трех принципах. [c.386]

    Большая ось эллипсоидальных орбит равна диаметру круговой того же запаса энергии. Соотношение осей эллипса меняется от 1 до [п—1). Было введено квантовое число I, соответствующее различным ориентациям эллипса в пространстве. При наложении магнитного поля на атом для характеристики проекции вектора орбитального момента на направление поля (силовую ось) было введено магнитное квантовое число /п . Его значение меняется от —I через О до 1. Таким образом, теория планетарной модели атома требовала для характеристики и расчета спектров атомов уже не одно, а три целочисленных характеристики п — главное квантовое число, I — побочное квантовое число, mi — магнитное квантовое число. Теперь теория правильно стала объяснять спектры многоэлектронных атомов. Однако опыт—самый строгий кри тик всех теорий — показывал, что объяснение является лишь ка-> иественным. Стала понятна лишь систематика линий в спектрах можно было каждую спектральную линию связать с оаределенныл переходом электрона. Однако ни энергию электронов, ни интен сивность линий в спектрах теоретически рассчитать не удавалось, [c.47]


    Раз уж мы удостоверились, что квантовая механика объясняет свойства атомов и молекул, то нам подобает приспособить ход наших рассуждений к этой модели. Атом водорода —это пример, из которого можно получить наибольшее количество информации, ибо для него возможно точное решение уравнения Шредингера. Ни для какой другой системы из атомов (или молекул), включающей два или более электрона, точного решения нет, хотя можно ввести приближения, которые позволят подойти очень близко к истинным решениям. Такие многоэлектронные атомы будут рассмотрены в гл. 2, когда можно будет воспользоваться всемиТпреимуществами четкого понимания строения атома водорода. [c.35]


Смотреть страницы где упоминается термин Многоэлектронные атомы модель ССП: [c.60]    [c.60]   
Смотреть главы в:

Строение материи и химическая связь -> Многоэлектронные атомы модель ССП




ПОИСК





Смотрите так же термины и статьи:

Многоэлектрониые атомы

Модель атома



© 2025 chem21.info Реклама на сайте