Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Точка стеклования атактического полипропилена

    Термомеханическая кривая кристаллического полипропилена (рис. 2, 1) показывает, что в широком интервале температур в отличие от атактического полипропилена образец остается практически недеформируемым и лишь при температуре плавления переходит в вязкотекучее состояние. Однако если полипропилен аморфизовать (нагреванием выше температуры плавления и последующим быстрым охлаждением), то на термомеханической кривой появится область, соответствующая высокоэластическому состоянию (рис. 2,2). Как и у атактического полипропилена, область высокоэластических деформаций начинается с —10°, но нри дальнейшем повышении температуры деформируемость падает, что связано с переходом полимера из аморфного состояния в кристаллическое. Это свойство объясняется регулярным строением цепей полипропилена, благодаря которому аморфизованный полипропилен способен повторно кристаллизоваться. В расплаве меняется конфигурация цепей, но сохраняется правильная последовательность асимметрических углеродных атомов в молекулах. Быстрое охлаждение расплава препятствует процессу упорядочивания цепей, и в стеклообразном состоянии они сохраняют ту форму, которую приобрели в расплаве. Кристаллизация происходит только выше температуры стеклования, когда подвижность звеньев достаточно велика. Исследование термомеханических свойств амор-физованного образца является, таким образом, одним из методов определения температуры стеклования кристаллизующегося полимера. [c.133]


    На основании исследования термодинамических свойств полипропилена показано, что теплота горения фракции полимера, растворимой в эфире, на 0,1% ниже теплоты горения изотактического полипропилена йз данных по теплоемкости вычислены энтропии и энтальпии изотактического и атактического полипропиленов. Снижение температуры стеклования, имеющее место при переходе от изотактического к атактическому полипропилену, объясняется облегчением вращения сегментов в аморфном материале В то же время наблюдается постоянство отношения температуры стеклования к температуре плавления, равное 0,66. [c.302]

    В то же время, образцы с другими размерами сферолитов, а также атактический полипропилен, не способны давать ниже температуры стеклования такие большие деформации. Было обнаружено, что эта деформация в значительной степени (на 50— 70 %) обратима при температуре растяжения и полностью обратима после нагревания полимера выше температуры стеклования. Общая деформация полипропилена в этом случае значительно превышала деформацию, соответствующую пределу вынужденной эластичности полимера, что принципиально отличает механизм обратимой деформации этой системы от механизма обратимости деформации, рассмотренного в работах [129—131. Восстановление размеров образцов сопровождается полным восстановлением исходной структуры полимера. МетО  [c.70]

    Если изобразить графически зависимость удельного объема от температуры, то для атактического и изотактического полимеров получаются разные диаграммы. Кривая зависимости, полученная для атактического полипропилена, характерна для аморфных материалов и состоит в грубом приблгжении нз двух линейных ветвей, которые пересекаются в точке, обозначаемой как температура перехода второго рода, или как температура стеклования (рис, 5.16) [,40], Положение этой точки в известной мере зависит от метода измерения. Таким образом, мы имеем здесь дело не с типичным фазовым превращением, а скорее с изменением энергии межмолекулярного взаимодействия, в результате которого увеличивается подвижность отдельных участков макромолекулярной цепи (сегментов), В то время как ниже температуры стеклования взаимное положение сегментов практически фиксируется, выше этой температуры энергия теплового движения сегментов увеличивается и становится достаточной для преодоления межмолекулярного, а также внутримолекулярного взаимодействия. Особенно сильно это проявляется в изменении модуля упругости аморфных полимеров. Из твердого, а часто и хрупкого состояния полимер переходит в каучукоподобное (высокоэластическое), когда уже под действием небольшой внешней силы он приобретает значительную деформацию, которая после снятия нагрузки почти мгновенно исчезает. Высокоизотактический полипропилен практически вообще не обнаруживает перехода второго рода. Зато прн температуре, близкой к точке плавения кристаллитов, его удельный объем [c.112]


    При замещении в полиэтилене обоих атомов водорода в каждом втором углеродном атоме на метильные группы образуется полиизобутилен, повторяющееся звено которого СН2С(СНз)2 (молекулярный вес 56,11). Обычно этот полимер полностью аморфный. Ферри и Паркс (1936) измерили теплоемкость образца с низким молекулярным весом М 4900) в температурном интервале от 120 до 295 К. Фурукава и Рейли (1956) провели измерения теплоемкости высокомолекулярного образца (Л135-10 ) в температурном интервале 14...380К. Температуры стеклования этих образцов оказались равными соответственно 197 и 199 К. Теплоемкость низкомолекулярного образца была на 1... 2% выше, что соответствует данным для других полимеров, для которых проводили измерения теплоемкости на образцах различного молекулярного веса. В табл. П1. 15 суммированы сглаженные данные Фурукава и Рейли. Сравнение с полипропиленом показывает, что ниже 80 К теплоемкость атактического полипропилена выше теплоемкости полиизобутилена, несмотря на то что полиизобутилен обладает тремя дополнительными низкочастотными колебаниями — крутильными СНз-группы и двумя С—СНз-деформа-ционными колебаниями. [c.180]


Смотреть страницы где упоминается термин Точка стеклования атактического полипропилена: [c.173]   
Смотреть главы в:

Термостойкие полимеры -> Точка стеклования атактического полипропилена




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2024 chem21.info Реклама на сайте